Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Panda, H. S. Sahoo, P. K. Kumar, Niraj |
| Copyright Year | 2017 |
| Abstract | Carbon black (CB) decorated Ni/Co oxide composite electrodes are fabricated in situ with variable CB percentages by using the successive ionic layer adsorption and reaction (SILAR) method. This green process tuned the metal ion concentration on carbon and offered binder-free, facile and scalable features. The structure, morphology and electrochemical performances of the developed nanocomposites are characterized using various sophisticated techniques. An elemental study suggested the substitution of more Ni2+ in NixCo1−xO4 with varying carbon concentrations, which was correlated with the change in the relaxation rate of the composites. X-ray photoelectron spectroscopy confirmed the presence of Ni2+ and Ni3+ in the Ni/Co–carbon composites, which are additionally responsible for improving the conductivity of the developed electrodes. Also, conductive atomic force microscopy supported the improvement in the local conductivity of NC7 compared to NC0. NC7 electrodes demonstrated a specific capacitance of around 1811 F g−1 at a current density of 0.5 mA cm−2 with excellent cyclic retention (92% even after 8000 cycles) and energy density (91 W h Kg−1). Further, NC7 electrodes are used to fabricate an asymmetric solid state supercapacitor device (capacitance around 258 F g−1), and are connected to a commercial solar cell for storing energy, which is effective to light a commercial LED. |
| Starting Page | 3562 |
| Ending Page | 3573 |
| Page Count | 12 |
| File Format | HTM / HTML PDF |
| ISSN | 11440546 |
| Volume Number | 41 |
| Issue Number | 9 |
| Journal | New Journal of Chemistry |
| DOI | 10.1039/c6nj04123j |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Carbon black Ion Energy density Photoemission spectroscopy Carbon Solar cell NC (complexity) SILAR Adsorption Electrochemistry Conductive atomic force microscopy Supercapacitor Capacitance Carabiner Electric current X-ray photoelectron spectroscopy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Materials Chemistry Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|