Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Cruz-Silva, Eduardo Charlier, Jean-Christophe Munoz-Sandoval, Emilio Lopez-Urias, Florentino Terrones, Humberto Meunier, Vincent Terrones, Mauricio Sumpter, Bobby G. |
| Copyright Year | 2011 |
| Abstract | A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus–nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P–N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells. |
| Starting Page | 1008 |
| Ending Page | 1013 |
| Page Count | 6 |
| File Format | HTM / HTML PDF |
| ISSN | 20403364 |
| Volume Number | 3 |
| Issue Number | 3 |
| Journal | Nanoscale |
| DOI | 10.1039/c0nr00519c |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Carbon nanotube Ammonia Oxygen Electrode Adsorption Hydrogen Covalent bond Phosphorus Electrical resistance and conductance Sulfur dioxide |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nanoscience and Nanotechnology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|