Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Chen, Jem-Kun Ho, Jinn-Hsuan Fan, Jian-Cin Chang, Jia-Yaw Ou, Keng-Liang Huang, Chih-Ching Chen, Liang-Yih |
| Copyright Year | 2012 |
| Abstract | In this study, we demonstrate that Cu2ZnSn(SxSe1−x)4 nanocrystals with a tunable bandgap could be synthesized by a “hot-injection” protocol. In this protocol, metal stearates dissolved in oleylamine were injected into a hot solution of anion precursors in 1-octadecene (ODE) at a given reaction temperature. ODE, which is a low-cost, low-hazard, and air-stable liquid, was used as the solvent. Oleylamine was chosen as both the reagent to activate the precursors and as the capping agent for the nanocrystals. The composition of the Cu2ZnSn(SxSe1−x)4 nanocrystals could be adjusted across the x range from 0 to 1 by varying the S/Se reactant ratio. The lattice parameters (a and c) measured from X-ray diffraction patterns decreased linearly with increasing Se content. This trend was consistent with Vegard's law, which confirmed the formation of homogeneous Cu2ZnSn(SxSe1−x)4 nanocrystals. The A1 symmetry modes of the Cu2ZnSn(SxSe1−x)4 nanocrystals seen by Raman spectroscopy gradually shifted with decreasing x (S content) to the lower frequency side and completely disappeared when x = 0. The absorption spectra of the Cu2ZnSn(SxSe1−x)4 nanocrystals revealed that the bandgaps of the nanocrystals could be adjusted over the range 1.0–1.5 eV by decreasing the S content. The relatively small value for the bowing parameter indicated that the synthesized Cu2ZnSn(SxSe1−x)4 nanocrystals had good miscibility. |
| Starting Page | 14667 |
| Ending Page | 14673 |
| Page Count | 7 |
| File Format | HTM / HTML PDF |
| ISSN | 09599428 |
| Volume Number | 22 |
| Issue Number | 29 |
| Journal | Journal of Materials Chemistry |
| DOI | 10.1039/c2jm31901b |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Raman Band gap Oleylamine Ion Octadecene Solvent Reagent Crystal structure X-ray crystallography Raman spectroscopy Electronvolt |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Materials Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|