Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Rusiman, M.S. Nasibov, E. Adnan, R. |
| Copyright Year | 2011 |
| Description | Author affiliation: Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia (Rusiman, M.S.) || Dokuz Eylul University, Turkey (Nasibov, E.) || Universiti Teknologi Malaysia (UTM), Malaysia (Adnan, R.) |
| Abstract | The fuzzy c-regression models (FCRM) have been known to be used in order to fit models with a certain type of mixed data. In this study, we proposed new optimal FCRM models (OFCRM). In order to obtain the least mean square error (MSE), we proposed modification of $w^{i}(x),$ the backward elimination method and the adjustment of the fuzzifier (w). The $w^{i}(x)$ is found by using the matrix Wi in weighted least-square (WLS) method. The backward elimination method is used in the variable selection in the OFCRM models, whereas the fuzzifier, w is adjusted by putting in various values of w (between 1 and 3). The OFCRM models are tested to the simulated data and the OFCRM models can approximate the given nonlinear system with a higher accuracy. In this study, the fuel consumption of different cars in miles per gallon (MPG) with eight independent variables were predicted using the OFCRM models. It was found that all variables are significant and w= 1.502 is the best fuzzifier value to be used in OFCRM models. The comparison among multiple linear regression (MLR) model, FCRM models and OFCRM models were done to find the best model by using the mean square error (MSE). It was found that the OFCRM models with the lowest MSE (MSE=3.106) tends to be the best model if compared to the MLR model (MSE=8.24) and FCRM models (MSE=7.848). This new technique has been found to have great capabilities and more reliable in predicting the dependent variable. |
| Starting Page | 333 |
| Ending Page | 338 |
| File Size | 1197022 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781467300995 |
| e-ISBN | 9781467301022 |
| DOI | 10.1109/SCOReD.2011.6148760 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-12-19 |
| Publisher Place | Malaysia |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Fuzzy c-regression models (FCRM) mean square error (MSE) optimal FCRM models (OFCRM) Reliability multiple linear regression (MLR) model |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|