Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Shuping Liu Panangadan, A. Raghavendra, C.S. Madni, A.M. |
| Copyright Year | 2014 |
| Description | Author affiliation: Ming Hsieh Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA (Shuping Liu; Panangadan, A.; Raghavendra, C.S.) || Electr. Eng. Dept., Univ. of California Los Angeles, Los Angeles, CA, USA (Madni, A.M.) |
| Abstract | This paper presents the Average-Max Reinforcement Learning (AMRL) algorithm that can be used to approximate a global policy of a Markov Decision Process (MDP) as a set of local policies that can be executed in a partially observable environment. The local policies are obtained by reinforcement learning and averaging state-action tables under a stochastic process model. This approach overcomes the scalability problem that arises when a large MDP has to be solved exactly. The approach is motivated by the problem of computing coordination policies for correlated but distributed sensors. We demonstrate the performance of this learning scheme on a simulation of a wireless body sensor network. These results show that the performance of the AMRL algorithm is significantly better than a random policy and is close to the optimal policy that can be obtained from solving a global MDP. The results also show that the AMRL algorithm is scalable to networks represented by large state spaces. |
| Starting Page | 285 |
| Ending Page | 290 |
| File Size | 1820430 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781889335490 |
| DOI | 10.1109/WAC.2014.6935892 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2014-08-03 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | TSI Press |
| Subject Keyword | Approximation algorithms Indexes Silicon Artificial neural networks Microcontrollers Tin Discrete Intelligent Reinforcement Learning Distributed Sensor Networks |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|