Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Suhir, E. Bensoussan, A. Khatibi, G. Nicolics, J. |
| Copyright Year | 2015 |
| Description | Author affiliation: Portland State Univ., Portland, OR, USA (Suhir, E.) || Tech. Univ., Vienna, Austria (Khatibi, G.; Nicolics, J.) || Inst. of Technol. Res., Toulouse, France (Bensoussan, A.) |
| Abstract | The recently suggested probabilistic design for reliability (PDfR) concept of electronics and photonics (EP) products is based on 1) highly focused and highly cost-effective failure oriented accelerated testing (FOAT), aimed at understanding the physics of the anticipated failures and at quantifying, on the probabilistic basis, the outcome of FOAT conducted for the most vulnerable element(s) of the product of interest, for the most likely applications and for the most likely and meaningful combination of possible stressors (stimuli); 2) simple and physically meaningful predictive modeling (PM), both analytical and computer-aided, aimed at bridging the gap between the obtained FOAT data and the most likely actual operation conditions; and 3) subsequent FOAT-and-PM-based sensitivity analysis (SA) using the methodologies and algorithms developed as important by-products at the two previous steps. The PDfR concept proceeds from the recognition that nothing is perfect, and that the difference between a highly reliable and an insufficiently reliable product is “merely” in the level of the probability of its field failure. If this probability (evaluated for the anticipated loading conditions and the given time in operation) is not acceptable, then a SA can be effectively employed to determine what could/should be changed to improve the situation. The PDfR analysis enables one also to check if the product is not "over-engineered", i.e., is not superfluously robust. If it is, it might be too costly. The operational reliability cannot be low, but it does not have to be higher than necessary either. It has to be adequate for the given product and application. When reliability and cost-effectiveness are imperative, ability to optimize reliability is a must, and no optimization is possible if reliability is not quantified. We show that optimization of the total cost associated with creating a product with an adequate (high enough) reliability and acceptable (low enough) cost can be interpreted in terms of an adequate level of the availability criterion. The major PDfR concepts are illustrated by practical examples. Although some advanced PDfR predictive modeling techniques have been recently developed, mostly for aerospace applications, the practical examples addressed in this talk employ more or less elementary analytical models. In this connection we elaborate on the roles and interaction of analytical (mathematical) and computer-aided (simulation) modeling. We show also how the recently suggested powerful and flexible Boltzmann-Arrhenius-Zhurkov (BAZ) model and particularly its multi-parametric extension could be successfully employed to predict, quantify and assure operational reliability. The model can be effectively used to analyze and design EP products with the predicted, quantified, assured, and, if appropriate and cost-effective, even maintained and specified probability of operational failure. It is concluded that these concepts and methodologies can be accepted as an effective means for the evaluation of the operational reliability of EP materials and products, and that the next generation of qualification testing (QT) specifications and practices for such products could be viewed and conducted as a quasi-FOAT, an early stage of FOAT that adequately replicates the initial non-destructive segment of the previously conducted comprehensive “full-scale” FOAT. |
| File Size | 199822 |
| File Format | |
| ISBN | 9781467373623 |
| ISSN | 19381891 |
| DOI | 10.1109/IRPS.2015.7112749 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-04-19 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Reliability engineering Probabilistic logic Predictive models Analytical models Maintenance engineering Physics |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|