Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Galar, D. Kumar, U. Yuan Fuqing |
| Copyright Year | 2012 |
| Description | Author affiliation: Luleå University of Technology (Galar, D.; Kumar, U.) || Luleå University of technology (Yuan Fuqing) |
| Abstract | With increasing amounts of data being generated by businesses and researchers, there is a need for fast, accurate and robust algorithms for data analysis. Improvements in database's technology, computing performance and artificial intelligence have contributed to the development of intelligent data analysis. The primary aim of data mining is knowledge discovery, i.e. patterns in the data that lead to better understanding of the data generating process and to useful predictions. The knowledge that becomes available through data mining enables an asset owner to make important decisions about life cycle costs in advance. In maintenance field, CMMS (Computer maintenance management system) and CM (Condition Monitoring) are the most popular software available in the industries. Since first one stores all historical data, maintenance actions, events and ma nufacturer recommendations, second one collects and stores all critical physical parameters (vibration, temperature.) to be monitored in a regular time basis. However, converting these data into useful information is a challenge. The degradation process of a system may be affected by many unknown factors, such as unidentified fault modes, unmeasured operational conditions, engineering variance, environmental conditions, etc. These unknown factors not only complicate the degradation behaviors of the system, but also make it difficult to collect quality data. Due to lack of knowledge and incomplete measurements, certain important con text information (e.g. fault modes, operational conditions) of the collected data will be missing. Therefore, historical data of the system with a large variety of degradation patterns will be mixed together. With such data, learning a global model for Remaining Useful Life (RUL) prediction becomes extremely hard since the end user does not have enough and good-quality data to model properly the system. This has led us to look for advanced RUL prediction techniques beyond the traditional RUL prediction models. The degradation process for many engineering systems, especially mechanical systems, is irreversible unless the condition is recovered by effective maintenance actions. The irreversible degradation process does not necessarily imply that the observed features will exhibit a monotonic progression pattern during degradation. Such progression pattern is sometimes hard to model using parametric methods. Considering a degradation process involving no or limited maintenance, the process may compose of a sequence of irreversible stages (either discrete or continuous) from new to be worn out, which can be implicitly expressed by the trajectory of the measured condition data or features. Therefore, the RUL of the system can be estimated if its future degradation trend can be projected from those historical instances. In this paper, a novel RUL prediction method inspired by feature maps and SVM classifiers is proposed. The historical instances of a system with life-time condition data are used to create a classification by SVM hyper planes. For a test instance of the same system, whose RUL is going to be estimated, degradation speed is evaluated by computing the minimal distance defined based on the degradation trajectories, i.e. the approach of the system to the hyper plane that segregates good and bad condition data at a different time horizon. Therefore, the final RUL of a specific component can be estimated, and global RUL information can then be obtained by aggregating the multiple RUL estimations using a density estimation method. Proposed model develops an effective RUL prediction method that addresses multiple challenges in complex system prognostics, where many parameters are unknown. Similarities between degradation trajectories can be checked in order to enrich existing methodologies in prognostic's applications. Existing CM data for bearings will be used to verify the model. |
| Starting Page | 1 |
| Ending Page | 6 |
| File Size | 611585 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781457718496 |
| ISSN | 0149144X |
| e-ISBN | 9781457718519 |
| DOI | 10.1109/RAMS.2012.6175481 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-01-23 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Degradation Support vector machines Trajectory Feature extraction Maintenance engineering Kernel Estimation maintenance RUL SVM features degradation speed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|