Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Bauce, M. Capuani, S. Di Domenico, G. Fiorini, M. Giagu, S. Lamanna, G. Messina, A. Palombo, M. Rescigno, M. |
| Copyright Year | 2014 |
| Description | Author affiliation: Univ. of Ferrara, Ferrara, Italy (Di Domenico, G.; Fiorini, M.) || INFN, Rome, Italy (Rescigno, M.) || Univ. of Rome, Sapienza, Italy (Bauce, M.; Giagu, S.; Messina, A.; Palombo, M.) || CNR, Rome, Italy (Capuani, S.) || INFN, Pisa, Italy (Lamanna, G.) |
| Abstract | The GAP project aims at the deployment of Graphic Processing Units (GPU) in real-time applications, ranging from online event selection (trigger) in high-energy physics experiments to medical imaging reconstruction. The final goal of the project is to demonstrate that GPUs can have a positive impact in sectors different for rate, bandwidth, and computing intensity. The relevant aspects under study are the analysis of the total latency of the system, the optimization of the computational algorithms, and the integration with the data acquisition system. In this contribution we report on the application of GPUs for trigger selections in particle physics experiments, and for the reconstruction of medical images acquired by a nuclear magnetic resonance system. In particular we discuss how specific trigger algorithms can be naturally parallelized and thus benefit from the implementation on the GPU architecture, in terms of execution speed and complexity of the analyzed events. As a benchmark application we consider the trigger algorithms of two different particle physics experiment: NA62 and Atlas, two different combination of event complexity and processing latency requirements. The fast and parallel execution of the trigger algorithm can improve the resolution of the calculated relevant quantities, that will enrich the purity of the collected data sample. The stability of this solution for increasing complexity of the analyzed events is particularly relevant for its application in the upcoming physics experiment. Most of the future accelerator machine upgrades will push further the rate of data to be processed, hence the GPU can provide a feasible solution to maintain sustainable trigger rates. A similar approach can be applied to medical imaging, with particular reference to NMR scan reconstruction with the kurtosis diffusion method. This recently developed technique is based on computationally very intense algorithms performed thousands of times to reconstruct image properties with a good resolution. The implementation of this elaboration on GPUs can significantly reduce the processing time, making it suitable for the use in real-time diagnostic. |
| Starting Page | 1 |
| Ending Page | 5 |
| File Size | 414546 |
| Page Count | 5 |
| File Format | |
| e-ISBN | 9781479936595 |
| DOI | 10.1109/RTC.2014.7097481 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2014-05-26 |
| Publisher Place | Japan |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Graphics processing units Image reconstruction Physics Nuclear magnetic resonance Software algorithms Biomedical imaging |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|