Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Zingarelli, R.A. Chin-Bing, S.A. Collins, M.D. |
| Copyright Year | 2009 |
| Description | Author affiliation: Naval Research Laboratory Washington, D.C. 20375 USA (Collins, M.D.) || Naval Research Laboratory Stennis Space Center, MS 39529 USA (Zingarelli, R.A.; Chin-Bing, S.A.) |
| Abstract | Fourier transform methods are the standard way for determining time-domain pulse structure and arrival time from a set of continuous wave (discrete frequency) underwater acoustic model calculations. This technique requires a large number of computer model runs at closely spaced frequencies, often making it computationally expensive. It has the advantages of including the correct attenuation at each frequency component, and of correctly treating continuity requirements at the water/sediment interface. Direct time-domain computer models are not as accurate for ocean bottoms with strong attenuation over a large bandwidth of frequencies. In this work the frequency-domain/Fourier approach is optimized for maximum efficiency at a given level of acceptable imprecision. Techniques are presented to improve the efficiency of the individual frequency component calculations, and to avoid running many of the frequencies. Efficiencies at individual frequencies are gained through intelligent selection of grid parameters in the ocean acoustic model (a parabolic equation model). Further improvements are achieved through intelligent zero padding schemes, and by interpolating envelope functions at the receiver location in order to estimate (and hence avoid running) up to 90% of the calculations required by the Nyquist sampling theorem. The effects of the various approximations are shown in the examples. |
| Starting Page | 1 |
| Ending Page | 5 |
| File Size | 500908 |
| Page Count | 5 |
| File Format | |
| ISBN | 9781424449606 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-10-26 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | MTS |
| Subject Keyword | Frequency Acoustic pulses Time domain analysis Attenuation Oceans Acoustic propagation Fourier transforms Underwater acoustics Sediments Bandwidth |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|