Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Xue Zhang Wang-xin Xiao |
| Copyright Year | 2012 |
| Description | Author affiliation: School of Electronics Engineering and Computer Science, Peking University, Beijing, China (Xue Zhang) || Research Institute of Highway Ministry of Transport, Beijing, China (Wang-xin Xiao) |
| Abstract | Clustering aided classification methods are based on the assumption that the learned clusters under the guidance of initial training data can somewhat characterize the underlying distribution of the data set. However, our experiments show that whether such assumption holds is based on both the separability of the considered data set and the size of the training data set. It is often violated on data set of bad separability, especially when the initial training data are too few. In this case, clustering based methods would perform worse. In this paper, we propose a clustering based two-stage text classification approach to address the above problem. In the first stage, labeled and unlabeled data are first clustered with the guidance of the labeled data. Then a self-training style clustering strategy is used to iteratively expand the training data under the guidance of an oracle or expert. At the second stage, discriminative classifiers can subsequently be trained with the expanded labeled data set. Unlike other clustering based methods, the proposed clustering strategy can effectively cope with data of bad separability. Furthermore, our proposed framework converts the problem of sparsely labeled text classification into a supervised one, therefore, supervised classification models, e.g. SVM, can be applied, and techniques proposed for supervised learning can be used to further improve the classification accuracy, such as feature selection, sampling methods and data editing or noise filtering. Our experimental results demonstrated the effectiveness of our proposed approach especially when the size of the training data set is very small. |
| Starting Page | 2233 |
| Ending Page | 2237 |
| File Size | 574781 |
| Page Count | 5 |
| File Format | |
| ISBN | 9781467301985 |
| e-ISBN | 9781467301992 |
| DOI | 10.1109/ICSAI.2012.6223496 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-05-19 |
| Publisher Place | China |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Support vector machines Accuracy Two-stage classification Text categorization Noise Training data Clustering algorithms Classification algorithms Clustering Active semi-supervised clustering Text classification |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|