Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yudi Zhou Qingzhong Zhou |
| Copyright Year | 2011 |
| Description | Author affiliation: Department of POL Management Engineering, Logistics Engineering University, Chong Qing, China (Qingzhong Zhou) || Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China (Yudi Zhou) |
| Abstract | By analyzing the character of oil equipment detection, the intelligent fusion model of detection information of oil equipment has been established. The feature-level fusion algorithm based on fuzzy neural network and expert system has been proposed, in which the expert system has been embedded into fuzzy neural network so that it could choose the membership function and adjust the network structure. The improved PSO algorithm has been adopted to train fuzzy neural network and prune fuzzy rules. Evidence theory has been applied to achieve the decision-making level fusion. Then, the results of feature-level fusion have been taken as the evidences to construct the frame of discernment. On the basis of the generalized evidence combination rule, the conflict evidence combination rule based on the weighted averaging method is proposed, and the prior knowledge in expert system has been utilized to adjust the evidence weights. The research results show that the process of detection information fusion has abilities of adapting and self-learning. This research has significant importance on reliability of improving oil equipment. |
| Starting Page | 1170 |
| Ending Page | 1174 |
| File Size | 288972 |
| Page Count | 5 |
| File Format | |
| ISBN | 9781612847191 |
| e-ISBN | 9781612847221 |
| DOI | 10.1109/MEC.2011.6025675 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-08-19 |
| Publisher Place | China |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Neurons Decision making Expert system Information fusion Oil equipment detection Particle swarm optimization Training Fuzzy control Evidence theory Fuzzy neural networks Feature extraction Fuzzy neural network Expert systems |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|