Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Enyuan Dong Zhenwei Zhang Huajun Dong Chunen Fang |
| Copyright Year | 2011 |
| Description | Author affiliation: Dept. of Electrical and Electronics Engineering, Dalian University of Technology, Dalian, China (Enyuan Dong; Zhenwei Zhang) || Dept. of Electrical Engineering and Automation, Xihua University, Chengdu, China (Chunen Fang) || Dept. of Mechanical Engineering, Dalian Jiaotong University, Dalian, China (Huajun Dong) |
| Abstract | The mechanism of high voltage circuit breaker required high reliability, recently, requirement for high voltage circuit breaker in phase-control technology need to be high controllability and low mechanical scatter. Traditional permanent magnetic actuator (PMA) and applied high-speed repulsion driver are just propitious to medium voltage and low voltage circuit breaker due to their terribly loss of magnetism on a large stroke length. As for high voltage circuit breaker, overcoming this disadvantage is very important. In this paper, a new type actuator can be applied for long stroke length with precise work performance named magnetic force actuator(MFA) is presented, its structure is simple for the force driving the interrupter work comes from the coil with current in the magnetic field of permanent magnets, which is Ampere's law. MFA not only overcomes the very disadvantage of PMA on long stroke length, but also is beneficial to realize fast-adjust of electrical control, which is a good characteristic for actuators being used in phase-control switching. At first, the static magnetic field and static magnetic force of MFA are analyzed through Ansys to design proper magnetic circuit. Then the state equations describing the dynamic characteristics of MFA is analyzed by adopting four-order Runge-kutta method and finite element method, the details of capacitor voltage, coil current, displacement and velocity of moveable part, coil flux linkage and total magnetic force of MFA in this simulation can estimate the structure design more forward and can be utilized in comprehensive optimization design, several significant structure parameters affecting the dynamic characteristics are showed and some general criteria for optimal design are summarized. Simulation results show its good work performance by comparing the experiment characteristics of practical 40.5kV SF6 circuit breaker. Structure parameters through simulation will conduct MFA prototype manufacture and its relevant experiment investigation. |
| Starting Page | 1590 |
| Ending Page | 1593 |
| File Size | 1129810 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781457703645 |
| e-ISBN | 9781457703652 |
| DOI | 10.1109/DRPT.2011.5994151 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-07-06 |
| Publisher Place | China |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Coils Iron Magnetic circuits Circuit breakers Force Dynamics Mathematical model high voltage circuit breaker magnetic force actuator (MFA) dynamic characteristic finite element method (FEM) Runge-kutta method |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|