Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Joshi, R.V. Kanj, R. Ramadurai, V. |
| Copyright Year | 1993 |
| Abstract | We present a novel half-select disturb free transistor SRAM cell. The cell is 6T based and utilizes decoupling logic. It employs gated inverter SRAM cells to decouple the column select read disturb scenario in half-selected columns which is one of the impediments to lowering cell voltage. Furthermore, “false read” before write operation, common to conventional 6T designs due to bit-select and wordline timing mismatch, is eliminated using this design. Two design styles are studied to account for the emerging needs of technology scaling as designs migrate from 90 to 65 nm PD/SOI technology nodes. Namely we focus on a 90 nm PD/SOI sense Amp based and 65 nm PD/SOI domino read based designs. For the sense Amp based design, read disturbs to the fully-selected cell can be further minimized by relying on a read-assist array architecture which enables discharging the bit-line (BL) capacitance to GND during a read operation. This together with the elimination of half-select disturbs enhance the overall array low voltage operability and hence reduce power consumption by 20%-30%. The domino read based SRAM design also exploits the proposed cell to enhance cell stability while reducing the overall power consumption more than 30% by relying on a dynamic dual supply technique in combination of cell design and peripheral circuitry. Because half-selected columns/cells are inherently protected by the proposed scheme, the dynamic supply “High” voltage is only applied to read selected columns/cells, while dynamic supply “Low” is employed in all other situations, thereby reducing the overall design power. A short bitline loading of 16 cells/BL is adopted to achieve high-performance low-power operation and lower bitline capacitance to improve stability. A newly developed fast Monte Carlo based statistical method is used to analyze such a unique cell, and 65 nm design simulations are carried out at 5 GHz. The feasibility of the cell and sensitivity to sense Amp timing has been proved by fabricating a 32 kb array in a 90-nm PD/SOI technology. Hardware experiments and simulation results show improvements of cell Vddmin over traditional 6T cells by more than 150 mV for 90 nm PD/SOI technology. Also experimental results based on fabricated 65 nm PD/SOI (1.6 kb/site × 80 sites) hardware also asserts half-select disturb elimination and hence the ability to enable significant power savings. The performance and speed are shown to be comparable with the conventional 6T design. |
| Sponsorship | IEEE Computer Society Association for Computing Machinery (ACM)/SIGDA IEEE Computer Society Technical Committee on Design Automation |
| Starting Page | 869 |
| Ending Page | 882 |
| Page Count | 14 |
| File Size | 1812824 |
| File Format | |
| ISSN | 10638210 |
| Volume Number | 19 |
| Issue Number | 5 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-05-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Random access memory Partial discharges Voltage Timing Capacitance Energy consumption Hardware Logic Inverters Impedance stability Column-decoupled differential/domino read half-select low power 8T SRAM |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering Software Hardware and Architecture |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|