Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Sandeep, B. Reddy Magee, Allan Ross Rajeev, K. Jaiman |
| Copyright Year | 2018 |
| Abstract | In this paper, a general data-driven approach to construct a reduced-order model (ROM) for the coupled fluid-structure interaction (FSI) problem of a transversely vibrating bluff body in an incompressible flow is presented. The proposed data-driven approach relies on the Eigensystem Realization Algorithm (ERA) to design ROM models in a state-space format. The stability boundaries of the coupled FSI system are obtained by examining the eigenvalue trajectories of the ERA-based ROM. These stability boundaries provide us valuable quantitative insights into the lock-in phenomenon of the bluff-body vibration. We demonstrate the present ERA-based ROM technique for various configurations of bluff bodies such as an isolated single cylinder, the side-by-side and the tandem cylinder arrangements. A comparative study on the effect of different appendages to suppress the VIV of a cylinder is also presented using the ERA-based stability analysis. The validity of the proposed method for the FSI stability analysis on such variety of configurations has not been presented before and is the novel contribution of this paper. Overall, the proposed data-driven framework is found to be much more effective in terms of computational costs and the predicted lock-in regions are comparable to high-fidelity full-order simulations. This work has a potential for a profound impact on the design optimization and control of bluff body structures used in offshore industry. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791851210 |
| DOI | 10.1115/OMAE2018-78415 |
| Volume Number | Volume 2: CFD and FSI |
| Conference Proceedings | ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2018-06-17 |
| Publisher Place | Madrid, Spain |
| Access Restriction | Subscribed |
| Subject Keyword | Stability Vibration Locks (waterways) Fluid structure interaction Flow (dynamics) Optimization Vortex-induced vibration Design Algorithms Simulation Eigenvalues Ocean engineering Engineering simulation Cylinders |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|