Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Joshi, V. Gurugubelli, P. S. Law, Y. Z. Jaiman, R. K. Adaikalaraj, P. F. B. |
| Copyright Year | 2018 |
| Abstract | Precise position and motion control of offshore vessels is often challenging, especially in harsh environment due to highly nonlinear dynamic loads from free-surface ocean waves and currents. In addition, coupled nonlinear effects of risers and mooring cables connected to the vessel can lead to unexpected responses, thus justifying the significance of modeling these nonlinear coupled effects for safer and cost-effective design and operation of offshore structures. In this study, a fully coupled multi-field fluid-structure-interaction (FSI) solver is developed to simulate the wave- and flow-induced vibration of the flexible multibody system with constraints (viz., vessel-riser system) in a turbulent flow. The structural domain with multibody systems is solved using nonlinear co-rotational finite element method, whereas the fluid domain is solved using Petrov-Galerkin finite element method for moving boundary Navier-Stokes solutions. A partitioned iterative scheme based on non-linear interface force corrections is employed for coupling of the turbulent fluid-flexible multibody system with nonmatching interface meshes. Delayed Detached Eddy Simulation (DDES) via the Positivity Preserving Variational (PPV) method is employed for modeling turbulence effects at high Reynolds number. The free-surface ocean waves are modeled by the Allen-Cahn based phase-field method. We address two key challenges in the present variational coupled formulation. Firstly, the coupling of the incompressible turbulent flow with a system of nonlinear elastic bodies described in a co-rotated frame. Secondly, the two-phase coupling based on the phase-field approach to model the air-water interface. We then present the dynamics of coupled vessel-riser system studied in harsh environmental conditions with a view of developing a robust station keeping system. The proposed fully-integrated methodology based on the first principles of variational continuum mechanics removes many assumptions and empirically assigned parameters (e.g. drag and inertia coefficients) for modeling the surrounding fluid flow at high Reynolds number. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791851210 |
| DOI | 10.1115/OMAE2018-78281 |
| Volume Number | Volume 2: CFD and FSI |
| Conference Proceedings | ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2018-06-17 |
| Publisher Place | Madrid, Spain |
| Access Restriction | Subscribed |
| Subject Keyword | Water Offshore structures Fluid structure interaction Finite element methods Modeling Waves Design Fluids Flow-induced vibrations Ocean waves Eddies (fluid dynamics) Continuum mechanics Risers (casting) Currents Turbulence Inertia (mechanics) Fluid dynamics Multibody systems Delay differential equations Vessels Reynolds number Mooring Drag (fluid dynamics) Stress Cables Pipeline risers Simulation Dynamics (mechanics) Ocean engineering Motion control |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|