Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Joshi, Vaibhav Liu, Bin Rajeev, K. Jaiman |
| Copyright Year | 2016 |
| Abstract | When a riser array system is subjected to a uniform flow, an unstable flow-induced vibration commonly occurs among cylinders, generally called fluid-elastic instability. It can cause long-term or short-term damage to the riser array system. A numerical investigation has been performed in the present study. Generally, flow-induced vibrations include vortex-induced vibration (VIV), wake-induced vibration (WIV), jet switching, turbulent buffeting and fluid-elastic instability. The dynamic interactions among the fluid-induced vibrations, wake interference and proximity interference pose difficulties in the design and operation of the riser array system. The dynamics of a riser array system is very different from that of basic canonical configurations such as side-by-side, tandem and staggered arrangements. In a riser array system, the interferences come from all possible nearby constituent risers. There is a synchronization phenomenon among the cylinders, which may lead to detrimental collisions and short-term failures. It is known that the vortex-induced vibration (VIV) of an isolated circular cylinder is self-limiting. An extensive vibration occurs in the lock-in region within which the frequency of the vortex shedding matches the structural frequency of the immersed structure. In a riser array system, there is a point at which the vibration of cylinder suddenly increases. The vibration of the constituent risers increases without bound with the increment of the free-stream velocity. This free-stream velocity is defined as the critical velocity. The interference not only comes from the inline and cross-flow directions, but also the wake interference from the diagonal upstream risers. In a riser array system, each riser vibrates independently. However, there is symmetry of frequency spectrum observed about the inline direction along the middle row of the risers. In this study, the dynamic response of the different risers in the array system is investigated with the help of the amplitude response results from the canonical arrangements (side-by-side and tandem) and wake flow structures. The long top-tensioned riser system can be idealized by two-dimensional elastically mounted cylinders to solve the complex fluid-structure interaction problem. The dynamic response of a typical riser array system has been analyzed at low and high Reynolds number. It is encouraging to see that the results reported in the present investigation can provide useful insight and suggestions in the design and optimization of riser systems to avoid collisions and various long-or short-term failures. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791849934 |
| DOI | 10.1115/OMAE2016-54695 |
| Volume Number | Volume 2: CFD and VIV |
| Conference Proceedings | ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2016-06-19 |
| Publisher Place | Busan, South Korea |
| Access Restriction | Subscribed |
| Subject Keyword | Fluid structure interaction Optimization Design Fluids Cross-flow Flow-induced vibrations Wakes Risers (casting) Damage Failure Cylinders Dynamic response Top-tensioned risers Turbulence Vortex shedding Vibration Reynolds number Locks (waterways) Synchronization Flow (dynamics) Circular cylinders Vortex-induced vibration Pipeline risers Collisions (physics) Dynamics (mechanics) |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|