Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Tang, G. H. Gu, X. J. Barber, R. W. Emerson, D. R. Zhang, Y. H. Reese, J. M. |
| Copyright Year | 2008 |
| Abstract | Understanding electroosmotic flow in microchannels is of both fundamental and practical significance for the design and optimization of various microfluidic devices to control fluid motion. Electroosmotic flows in microfluidic systems are restricted to the low Reynolds number regime, and mixing in these systems becomes problematic due to negligible inertial effects. To enhance the species mixing effect, the current study presents a numerical investigation of steady-state electroosmotic flow mixing in smooth microchannels, channels patterned with surface blocks, channels patterned with heterogeneous surfaces, as well as pulsating electroosmotic flow. The lattice Boltzmann equations, which recover the nonlinear Poisson-Boltzmann equation, the Navier-Stokes equation including the external force term, and the diffusion equation, were solved to obtain the electric potential distribution in the electrolyte, the velocity field, and the species concentration distribution, respectively. The simulation results confirm that wall blocks, heterogeneous surfaces, and electroosmotic pulsating flow can all change the flow pattern and enhance mixing in microfluidic systems. In addition, it is shown that pulsating flow provides the most promising method for enhancing the mixing efficiency. |
| Sponsorship | Nanotechnology Institute |
| Starting Page | 193 |
| Ending Page | 201 |
| Page Count | 9 |
| File Format | |
| ISBN | 0791842924 |
| DOI | 10.1115/MNHT2008-52207 |
| e-ISBN | 0791838137 |
| Volume Number | ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B |
| Conference Proceedings | ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer |
| Language | English |
| Publisher Date | 2008-06-06 |
| Publisher Place | Tainan, Taiwan |
| Access Restriction | Subscribed |
| Subject Keyword | Electroosmotic flow Mixing Pulsatile flow Heterogeneous surfaces Lattice boltzmann method Lattice boltzmann methods Electroosmosis Microchannels |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|