Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Zhang, Tiantian Jia, Li |
| Copyright Year | 2008 |
| Abstract | A three-dimensional incompressible model of microchannel is proposed. Flow characteristics of nitrogen flow in different microchannels (hydraulic diameter ranging 100–500μm, the ratio of length-to-diameter ranging 60–150, the ratio of height-to-width ranging 0.2–1) have been investigated numerically. It is found that the velocity distribution in microchannels is obviously different from that in conventional channels, and the maximum velocity occurs not in the channel core as conventional theory expected but near the walls due to the surface effect. These phenomena result in the reduction of the thickness of hydrodynamic boundary layer. So the hydrodynamic entry length in microchannels is much larger than that in conventional channels. Theoretical analysis was given to explain these phenomena. The effects of Reynolds number, hydrodynamic diameter, length-to-diameter ratio and height-to-width ratio on hydrodynamic entry length were analyzed. The correlation between L/D and Re and height-to-width ratio, which is useful for designing and optimizing the microchannel heat sinks and other microfluidic devices, was suggested. |
| Sponsorship | Nanotechnology Institute |
| Starting Page | 1257 |
| Ending Page | 1264 |
| Page Count | 8 |
| File Format | |
| ISBN | 0791842924 |
| DOI | 10.1115/MNHT2008-52027 |
| e-ISBN | 0791838137 |
| Volume Number | ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B |
| Conference Proceedings | ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer |
| Language | English |
| Publisher Date | 2008-06-06 |
| Publisher Place | Tainan, Taiwan |
| Access Restriction | Subscribed |
| Subject Keyword | Hydrodynamic entry length Numerical simulation Microchannel Boundary layer Entrance effect Laminar flow Boundary layers Microchannels |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|