Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Hajimirza, Shima Heltzel, Alex Howell, John |
| Copyright Year | 2012 |
| Abstract | In this paper, global optimization techniques are used to design broadband solar absorption enhancement in thin film amorphous silicon (a-Si) solar cells, using periodic nanostructures on the top and bottom surfaces of the cell. Considering a combination of silver rectangular gratings and indium tin oxide (ITO) coatings on both surfaces of the a-Si, numerical optimization techniques such as Simulated Annealing and a local constrained Quasi-Newton algorithm are used to optimize the surface texture patterns. Numerical results indicate that, unlike the case of metallic gratings on the front surface, a periodic silver grating structure on the back surface results in a modification of the absorption spectrum largely independent of the effect of anti-reflection ITO coatings on the front of the cell. Furthermore, additional improvement can be obtained by using a thin rear surface ITO layers. Therefore, using a combination of metallic gratings and ITO coatings on both sides, a wideband absorption spectrum enhancement is achievable. Simulations predict integrated enhancement factors as high as 2.0 (100% improvement) for the case of metallic grating on the back surface and ITO layers on the front, and as high as 2.2 (120% improvement) when a combination of grating and ITO coatings on both sides is used. Such noteworthy improvements are made possible by efficient multi-parameter optimization supplanting an intractable exhaustive search. |
| Sponsorship | Nanotechnology Institute |
| Starting Page | 559 |
| Ending Page | 567 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791854778 |
| DOI | 10.1115/MNHMT2012-75065 |
| Conference Proceedings | ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer |
| Language | English |
| Publisher Date | 2012-03-03 |
| Publisher Place | Atlanta, Georgia, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Solar cells Diffraction gratings Reflection Nanostructures Coatings Optimization Thin films Design Silver Absorption Algorithms Simulation Simulated annealing Solar energy Silicon Engineering simulation Surface texture |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|