Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Binoe, E. Abuan Menandro, S. Berana |
| Copyright Year | 2015 |
| Abstract | Heat-driven ejector refrigeration system is one of the fastest emerging technologies in cooling applications for years. This is due to the fact that it can harness cooling capacity from waste heat sources at above 80 °C. Low coefficient of performance (compared to commercial vapor compression systems) is the major disadvantage of the said system, and thus it became a topic of research studies in the field of cooling. The work required by the compressor in a vapor compression cycle (VCC) can be eliminated by using waste heat from any available heat source. Although a relatively lower COP was obtained, the savings using the ejector refrigeration system can cover all the disadvantages and proved that this system can be actually helpful if implemented in the real working systems with waste heat. In this study, a mathematical model for determining ejector parameters and performance was developed and applied to a system where shock was tried to be avoided. The model was coded into a computer program to allow easier computation of the ejector geometric and thermo-fluid dynamic parameters with varying input data such as the refrigerant to be used, evaporator and condensing temperatures, entrainment ratio, and velocity of the fluid flows. An ejector refrigeration system using ammonia, propane, R22, R134a, R1234yf, and R245fa as refrigerants was simulated using the said model. A boiler or generator temperature of 90 °C, a condenser temperature of 40 °C, and a refrigerating capacity of 35kW were maintained for all the refrigerants; however, the evaporator temperature was varied within the range of −10 °C to 10 °C, depending on the behavior of the system. A combination of a short straight section and then a converging-diverging profile was used for the combined mixing section and diffuser to smoothly decelerate the fully mixed supersonic flow exiting the short mixing section and thereby avoid shock waves in the section. The resulting parameters including the ejector dimensions, pressure and Mach number were determined along the length of the ejector. For all the simulation runs, the fluids respond as expected and the expansion energy was utilized from the high pressure side of the ejector as shown in the trend of pressure along the length of the ejector. Ejector size varies a little for different refrigerants; the calculated range of length is from 0.14 m to 0.36 m — this range shows the compactness of the resulting ejectors. The results show that a VCC refrigeration system can be replaced by a heat-driven ejector refrigeration system with the ejector that was designed from the simulations. Since the two systems are designed to have the same refrigerating capacity and working temperatures, it can be projected that savings can be made by using the ejector system. The compactness of the ejector produced in the simulations show a good potential for this kind of refrigerating system to be manufactured and mass produced. |
| File Format | |
| ISBN | 9780791857441 |
| DOI | 10.1115/IMECE2015-52521 |
| Volume Number | Volume 6B: Energy |
| Conference Proceedings | ASME 2015 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2015-11-13 |
| Publisher Place | Houston, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Supersonic flow Cycles Temperature Compression Condensers (steam plant) Computer software Vapors Modeling High pressure (physics) Fluids Ejectors Thermofluids Mach number Cooling Fluid dynamics Boilers Dimensions Compressors Generators Pressure Shock waves Heat Simulation Computation Diffusers Refrigeration Shock (mechanics) Waste heat Refrigerants |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|