Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Carmona, Mauricio Caicedo, Gabriel Vega, Humberto Gómez Bula, Antonio |
| Copyright Year | 2015 |
| Abstract | In conventional solar water heaters, the thermal energy storage is accomplished by increasing the sensible heat in a fluid. Therefore, the accumulation capacity of sensible heat is proportional to the mass storage and the increase of temperature, so that an increase in the requirements involves a bigger tank volume. Phase change materials (PCM) stored energy at constant temperature (or at least in a fairly narrow range of temperature) while the phase change is produced, they are presented as an alternative to compensate the solar heat supply periods and the thermal demand with a better heat accumulation per volume unit. In contrast, these systems require more complicated thermal analysis and designs than the traditional systems by sensible heat with a single phase. The selection of PCM, its content and location on the device will have a determining effect on the overall performance of the solar collector. This implies that the heat exchanger must be designed for each specific application. Currently, there are no commercial devices for heating water by solar energy using thermal accumulation with PCM. However, preliminary studies in lab scale have shown significant increases in efficiencies and supply capacity. Several authors have been performed experimental and numerical studies in solar collectors including PCM technology, but, due to the complexity of the phenomena and the high consumptions of resources for both approaches, it has not been possible to evaluate different configurations that lead to optimized designs for selection, location and amount of PCM. This fact shows the need to develop simplified models that consider the main physical phenomena in the operation, in order to support the experimental and numerical techniques to determine the comprehensive thermal behavior. This kind of models can be used to estimate the performance for different configurations and boundary conditions in a fast way, to make possible in a posterior stage a detailed evaluation with numerical analysis or an experimental technique. In this paper, a simplified comprehensive model for assessing thermal performance of a flat-plate solar collector with PCM is presented with incorporation of specialized semi-empirical correlations. The model takes into account the main thermodynamic and heat transfer processes in the device, including the internal and external convection effects, conduction, solar radiation analysis, radiation, losses and interactions between surfaces, material solid-liquid phase change and conjugated problems in gas-liquid-solid zones. Due to the numerous existing design alternatives, consideration of an excessive number of options in the final design can lead to long development times and process inefficiencies. Therefore, a methodology of design that includes fast calculations of the main thermal parameters is highly regarded, since this can reduce the number of study cases and thus obtain optimal configurations from the simplified models. The performance of the reduced model, including a sensibility analysis of several input data, is compared qualitatively with results obtained in a traditional collector for a typical cycle available in bibliography. Integrated simplified models are developed to perform a coarse preliminary design of flat solar collectors with incorporation of PCM technology, and thus serve as a pre-evaluator of the different configurations. |
| File Format | |
| ISBN | 9780791857441 |
| DOI | 10.1115/IMECE2015-51865 |
| Volume Number | Volume 6B: Energy |
| Conference Proceedings | ASME 2015 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2015-11-13 |
| Publisher Place | Houston, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Cycles Temperature Flat plates Solar collectors Thermal energy storage Heat exchangers Solar heating Convection Phase change materials Design Heat conduction Heat Fluids Numerical analysis Storage Radiation (physics) Heating Solar energy Boundary-value problems Thermal analysis Solar radiation Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|