Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Grant, L. Hawkes James, W. Sterbentz Binh, T. Pham |
| Copyright Year | 2015 |
| Abstract | A temperature sensitivity evaluation has been performed on a thermal model for the AGR-3/4 fuel experiment on an individual capsule. The experiment was irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Four TRISO fuel irradiation experiments are planned for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program which supports the development of the Very High Temperature Gas-cooled Reactor under the Next-Generation Nuclear Plant project. AGR-3/4 is the third TRISO-particle fuel test of the four planned and is intended to test tri-structural-isotropic (TRISO)-coated, low-enriched uranium oxy-carbide fuel. The AGR-3/4 test was specifically designed to assess fission product transport through various graphite materials. The AGR-3/4 irradiation test in the ATR started in December 2011 and finished in April 2014. Forty-eight (48) TRISO-particle fueled compacts were inserted into 12 separate capsules for the experiment (four compacts per capsule). The purpose of this analysis was to assess the sensitivity of input variables for the capsule thermal model. A series of cases were compared to a base case by varying different input parameters into the ABAQUS finite element thermal model. These input parameters were varied by ±10% to show the temperature sensitivity to each parameter. The most sensitive parameter was the compact heat rates, followed by the outer control gap distance and neon gas fraction. Thermal conductivity of the compacts and thermal conductivity of the various graphite layers vary with fast neutron fluence and exhibited moderate sensitivity. The least sensitive parameters were the emissivities of the stainless steel and graphite, along with gamma heat rate in the non-fueled components. Separate sensitivity calculations were performed varying with fast neutron fluence, showing a general temperature rise with an increase in fast neutron fluence. This is a result of the control gas gap becoming larger due to the graphite shrinkage with neutron damage. A smaller sensitivity is due to the thermal conductivity of the fuel compacts with fast neutron fluence. Heat rates and fast neutron fluence were input from a detailed physics analysis using the Monte Carlo N-Particle (MCNP) code. Individual heat rates for each non-fuel component were input as well. A steady-state thermal analysis was performed for each sensitivity calculation. ATR outer shim control cylinders and neck shim rods along with driver fuel power and fuel depletion were incorporated into the physics heat rate calculations. Surface-to-surface radiation heat transfer along with conduction heat transfer through the gas mixture of helium-neon (used for temperature control) was used in the sensitivity calculations. |
| File Format | |
| ISBN | 9780791857441 |
| DOI | 10.1115/IMECE2015-53544 |
| Volume Number | Volume 6B: Energy |
| Conference Proceedings | ASME 2015 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2015-11-13 |
| Publisher Place | Houston, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Temperature Neutrons Rods Fuels Fluence (radiation measurement) Heat conduction Uranium Thermal conductivity Damage Nuclear fission Cylinders Irradiation (radiation exposure) Shrinkage (materials) Helium Steady state Physics Heat Very high temperature reactors Radiation (physics) Particulate matter Stainless steel Graphite Finite element analysis Temperature control Thermal analysis Nuclear power stations Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|