Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Elzouka, Mahmoud Kulsreshath, Mukesh Ndao, Sidy |
| Copyright Year | 2014 |
| Abstract | Modeling of a near-field concentrated solar thermophotovoltaic (STPV) microsystem is carried out to investigate the use of STPV-based solid-state energy conversion as a high power density MEMS power generator. Near-field radiation can be realized between two closely separated surfaces (i.e. order of radiation wavelength), resulting in the enhancement of the heat radiation flux orders of magnitudes higher than the blackbody limit, consequently increasing cell output power density. The Near-field STPV model consists of an absorber/emitter model used to estimate the net power absorbed from solar irradiance, a near-field radiation transfer model to evaluate the power tunneled from the emitter to the PV cell at different separation distances, and a PV cell model to determine the photocurrent generated due to thermal radiation absorbed. Results reveal that decreasing separation distance between the emitter and the PV cell increases the absorber/emitter thermal efficiency, increases conversion efficiency, and the power density (×100 far-field). The results also predict increase in cooling power requirement as the separation distance is decreased, which may be a limiting design parameter for near-field STPV microsystems. Based on the model, an overall conversion efficiency of 17% at a separation distance of 10 nm and emitter temperature of 2000 K with solar concentration 6000 sun can be reached; this corresponds to an output power density of 9×105 W/m2. |
| File Format | |
| ISBN | 9780791849590 |
| DOI | 10.1115/IMECE2014-38396 |
| Volume Number | Volume 10: Micro- and Nano-Systems Engineering and Packaging |
| Conference Proceedings | ASME 2014 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2014-11-14 |
| Publisher Place | Montreal, Quebec, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Microelectromechanical systems Power density Temperature Cooling Generators Separation (technology) Modeling Wavelength Design Thermal radiation Radiation (physics) Solar energy Energy conversion Thermal efficiency Solar radiation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|