Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Kagerer, Markus Heller, Benedikt Tim, C. Lueth Irlinger, Franz |
| Copyright Year | 2013 |
| Abstract | The optimization of the electro-mechanical behavior of a bimorph piezoelectric actuator for microdrop generation is presented. The objective of this project is to enlarge the travel of this actuator which is mounted above a fluid filled chamber. Its bending inwards this chamber leads to the reduction of its volume. The generated pressure pulse leads to the ejection of a droplet out of the nozzle. The higher the travel, the higher the pressure pulse. Especially for printing high viscous media high pressure pulses are required. This microdrop generator consists of a piezoelectric transducer with surface electrodes, of a borosilicate glass diaphragm, and of a silicon chip including the fluidic components (nozzle, fluid filled chamber, throttle, and fluid inlet port). The transducer is bonded with a two component adhesive onto the glass diaphragm. Hereby, the bimorphic actuator is formed. Up to now, the electrodes have a width of 1.5 mm and they are electrically separated from each other by ablated areas with a depth of 20 μm. Each electrode belongs to one nozzle. Three nozzles are integrated in one microdrop generator. The advantage is that two other nozzles are working even if one nozzle is clogged. Within this optimization process the depth of the ablated area between the electrodes, the width of the electrodes, and the thickness of the diaphragm, of the adhesive layer as well as of the piezoelectric transducer are investigated. The simulation tool “ANSYS® 14” is used. The results show, the deeper the ablated area between the electrodes, the higher the travel. To ablate this area respectively to cut grooves through the piezoelectric material up to the glass diaphragm lead to a higher travel because the electrodes are not clamped laterally. Here, a solid state hinge characteristic enables the bending. Furthermore, widening the electrodes also leads to a higher travel because the capacitance is enlarged. Moreover, reducing the thickness of the glass diaphragm also leads to the enlargement of the travel up to a thickness of 25 μm. But during this optimization process a strong attention is paid to the manufacturability of all components with the available rapid manufacturing (RM) machines, such as laser system, dicing saw, or anodic bonding device. Glass diaphragms thinner than 100 μm are difficult to handle because the material is very brittle and the risk for damaging them during the manufacturing process of the microdrop generator is too high. For thicker diaphragms the resultant travel decreases due to the enlarged bending stiffness. The result is that a 100 μm thick glass diaphragm is chosen. The result for the adhesive layer thickness is, the thinner this layer, the higher the travel of the actuator. The adhesive has a small Young’s modulus. Therefore, the direct transmission of forces is reduced for thick adhesive layers. For production-related reasons a thickness of 20 μm is chosen. All components can be manufactured with the available RM machines. |
| File Format | |
| ISBN | 9780791856390 |
| DOI | 10.1115/IMECE2013-63150 |
| Volume Number | Volume 10: Micro- and Nano-Systems Engineering and Packaging |
| Conference Proceedings | ASME 2013 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2013-11-15 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Actuators Diaphragms (structural) Glass Risk Finite element methods Machinery Optimization Silicon chips Electrodes Hinges High pressure (physics) Young's modulus Fluids Diaphragms (mechanical devices) Piezoelectric transducers Lasers Piezoelectric actuators Nozzles Stiffness Manufacturing Borosilicate glasses Bonding Printing Transducers Generators Electromechanical effects Brittleness Heat resistant glass Pressure Adhesives Piezoelectric materials Simulation Drops Capacitance Diluents |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|