Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Trivedi, Aalok Agonafer, Dereje Sivanandan, Deepak Hendrix, Mark Sahrapour, Akbar |
| Copyright Year | 2008 |
| Abstract | Computational Fluid Dynamics (CFD) is widely used in the telecommunication industry to validate experimental data and obtain both qualitative and quantitative results during product development. A typical outdoor telecommunications cabinet requires the modeling of a large number of components in order to perform the required air flow and thermal design. Among these components, the heat exchanger is the most critical to thermal performance. The cabinet heat exchanger and other thermal components make up a complex thermal system. This thermal system must be characterized and optimized in a short time frame to support time-to-market requirements. CFD techniques allow for completing system thermal optimization long before product test data can be available. However, the computational model of the complex thermal system leads to a large mesh count and corresponding lengthy computational times. The objective of this paper is to present an overview of techniques to minimize the computational time for complex designs such as a heat exchanger used in telecommunication cabinets. The discussion herein presents the concepts which lead to developing a compact model of the heat exchanger, reducing the mesh count and thereby the computation time, without compromising the acceptability of the results. The model can be further simplified by identifying the components significantly affecting the physics of the problem and eliminating components that will not adversely affect either the fluid mechanics or heat transfer. This will further reduce the mesh density. Compact modeling, selective meshing, and replacing sub-components with simplified equivalent models all help reduce the overall model size. The model thus developed is compared to a benchmark case without the compact model. Given that the validity of compact models is not generalized, it is expected that this methodology can address this particular class of problems in telecommunications systems. The CFD code FLOTHERM™ by Flomerics is used to carry out the analysis. |
| Starting Page | 1561 |
| Ending Page | 1568 |
| Page Count | 8 |
| File Format | |
| ISBN | 9780791848715 |
| DOI | 10.1115/IMECE2008-68134 |
| e-ISBN | 9780791838402 |
| Volume Number | Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C |
| Conference Proceedings | ASME 2008 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2008-10-31 |
| Publisher Place | Boston, Massachusetts, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Compact modeling Telecommunication cabinet Best known methods (bkm) Computational fluid dynamics (cfd) Computational fluid dynamics Modeling Telecommunications |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|