Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Lee, Jungseob Kim, Nam Sung Choi, Ken Shin, Youngsoo Sinkar, Abhishek Han, Tae Hee Seomun, Jun |
| Abstract | Manufactured dies exhibit a large spread of maximum frequency and leakage power due to process variations, which have been increasing with technology scaling. Reducing the spread is very important for maximizing the frequency and the yield of power-constrained designs, because otherwise many dies that do not satisfy frequency or power constraints would be discarded. In this paper, we propose two optimization methods to improve the maximum operating frequency and the yield using power gates that already exist in many power-constrained designs. In the first method, we consider the designs of multiple cores, where each of them can be independently power-gated. When each core shows different frequencies due to within-die variations, the strength of a power gate in each core is adjusted to make their maximum operating frequencies even. This allows faster cores to consume less active leakage power, reducing the total power consumption well below a power constraint in a globally-clocked design. We subsequently increase global supply voltage for higher overall frequency until the power constraint is satisfied. In our experiments assuming multicore processors with 2--16 cores, the maximum operating frequency was improved by 4-23%. In the second method, we take leaky-but-fast dies (which otherwise would be discarded) and adjust the strength of the power gates such that they can operate in an acceptable power and frequency region. The problem is extended to designs employing a frequency binning strategy, where we have an additional objective of maximizing the number of dies for higher frequency bins. In our experiments with ISCAS benchmark circuits, most discarded fast-but leaky dies were recovered using the second method. |
| Starting Page | 121 |
| Ending Page | 126 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781605586847 |
| DOI | 10.1145/1594233.1594263 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2009-08-19 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Frequency Power gate Yield Optimization |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|