Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Cebrian, Juan M. Garcia, Jose M Aragon, Juan L. Kaxiras, Stefanos |
| Abstract | Energy-efficient microprocessor designs are one of the major concerns in both high performance and embedded processor domains. Furthermore, as process technology advances toward deep submicron, static power dissipation becomes a new challenge to address, especially for large on-chip array structures such as caches or prediction tables. Value prediction emerged in the recent past as a very effective way of increasing processor performance by overcoming data dependences. The more accurate the value predictor is the more performance is obtained, at the expense of becoming a source of power consumption and a thermal hot spot, and therefore increasing its leakage. Recent techniques, aimed at reducing the leakage power of array structures such as caches, either switch off (non-state preserving) or reduce the voltage level (state-preserving) of unused array portions.In this paper we propose the design of leakage-efficient value predictors by applying adaptive decay techniques in order to disable unused entries in the prediction tables. As value predictors are implemented as non-tagged structures an adaptive decay scheme has no way to precisely determine the induced miss-ratio due to prematurely decaying an entry. This paper explores adaptive decay strategies suited for the particularities of value predictors (Stride, DFCM and FCM) studying the tradeoffs for these prediction structures, that exhibit different pattern access behaviour than caches, in order to reduce their leakage energy efficiently compromising neither VP accuracy nor the speedup provided. Results show average leakage energy reductions of 52%, 70% and 80% for the Stride, DFCM and FCM value predictors of 20 KB respectively. |
| Starting Page | 113 |
| Ending Page | 122 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781595936837 |
| DOI | 10.1145/1242531.1242550 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2007-05-07 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Leakage Value prediction Cache decay Energy efficient architectures |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|