Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Pan, David Z. Devarayanadurg, Giri V. Ramalingam, Anand |
| Abstract | In this paper, we propose fast and efficient techniques to analyze the power grid with accurate modeling of the transistor network. The solution techniques currently available for power grid analysis rely on a model of representing the transistor network as a current source. The disadvantage of the above model is that the drain capacitance of the PMOS transistors which are already on is not modeled. The drain capacitance of the PMOS transistors which are on, act much like a decoupling capacitance in the power grid. By ignoring the drain capacitance, the voltage drop predicted is pessimistic. This implies that a designer is likely to overestimate the amount of decoupling capacitance needed. In our proposed model, we model the transistor network as a simple switch in series with a RC circuit. The presence of switches leads to a non-constant conductance matrix. So, the switch is modeled behaviorally to make the conductance matrix a constant in presence of switches. The resulting conductance matrix is a M-matrix thus making it amenable to linear algebraic methods presented in the literature. The proposed model is nearly as accurate as the SPICE model in predicting the voltage drop. We demonstrate that the current source model of the transistor network has an error of about 10% in predicting the voltage drop. The proposed model offers the middle ground between the accuracy of SPICE simulation and the speed of the current source model. The proposed model is 20--30x faster than SPICE. It also reduces the size of the decoupling capacitance by 2--10x in comparison with the methods presented in the literature. |
| Starting Page | 43 |
| Ending Page | 50 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781595936134 |
| DOI | 10.1145/1231996.1232007 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2007-03-18 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Rc model of transistor Behavioral modeling of switch Power grid |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|