Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Jouppi, Norman P. |
| Abstract | Micron-scale photonic devices integrated with standard CMOS processes have the potential to dramatically increase system bandwidths, performance, and configuration flexibility while reducing system power. I first describe some recent developments in silicon nanophotonic technology, such as microring resonators. Small devices have many advantages: reduced power, increased density, and increased speed. By integrating many thousands of these devices on a chip, photonics could potentially be used for most high-speed off-chip and global on-chip communication. Integrated photonics has many advantages at the board and rack scale as well. Recent high-speed board-level electrical signaling (>2.5GHz) precludes the use of multi-drop busses or communication over long distances on ordinary inexpensive PC board materials. By using photonics, high fan-out and high-fan-in bus structures can be built. Due to the low loss of optical signals versus distance, these structures can even be distributed over rack-scale distances. This dramatically increases system flexibility while reducing interconnect power. As an example of the potential impact of photonics, I describe a system architecture for the 2017 time frame we call Corona. Corona is a 3D many-core architecture that uses nanophotonic communication for both inter-core communication and off-stack communication to memory or I/O devices. Dense wavelength division multiplexed optically connected memory modules provide 10 terabyte per second memory bandwidth. A photonic crossbar fully interconnects its 256 low-power multithreaded cores at 20 terabyte per second bandwidth. We believe that in comparison with an electrically-connected many-core alternative, Corona can provide 2 to 6 times more performance on many memory intensive workloads, while simultaneously significantly reducing power. |
| Starting Page | 183 |
| Ending Page | 184 |
| Page Count | 2 |
| File Format | |
| ISBN | 9781605581095 |
| DOI | 10.1145/1393921.1393923 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2008-08-11 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Interconnect Power Photonics |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|