Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Annavaram, Murali Xu, Qiumin Jeon, Hyeran Kim, Keunsoo Ro, Won Woo |
| Abstract | As technology scales, GPUs are forecasted to incorporate an ever-increasing amount of computing resources to support thread-level parallelism. But even with the best effort, exposing massive thread-level parallelism from a single GPU kernel, particularly from general purpose applications, is going to be a difficult challenge. In some cases, even if there is sufficient thread-level parallelism in a kernel, there may not be enough available memory bandwidth to support such massive concurrent thread execution. Hence, GPU resources may be underutilized as more general purpose applications are ported to execute on GPUs. In this paper, we explore multiprogramming GPUs as a way to resolve the resource underutilization issue. There is a growing hardware support for multiprogramming on GPUs. Hyper-Q has been introduced in the Kepler architecture which enables multiple kernels to be invoked via tens of hardware queue streams. Spatial multitasking has been proposed to partition GPU resources across multiple kernels. But the partitioning is done at the coarse granularity of streaming multiprocessors (SMs) where each kernel is assigned to a subset of SMs. In this paper, we advocate for partitioning a single SM across multiple kernels, which we term as intra-SM slicing. We explore various intra-SM slicing strategies that slice resources within each SM to concurrently run multiple kernels on the SM. Our results show that there is not one intra-SM slicing strategy that derives the best performance for all application pairs. We propose Warped-Slicer, a dynamic intra-SM slicing strategy that uses an analytical method for calculating the SM resource partitioning across different kernels that maximizes performance. The model relies on a set of short online profile runs to determine how each kernel's performance varies as more thread blocks from each kernel are assigned to an SM. The model takes into account the interference effect of shared resource usage across multiple kernels. The model is also computationally efficient and can determine the resource partitioning quickly to enable dynamic decision making as new kernels enter the system. We demonstrate that the proposed Warped-Slicer approach improves performance by 23% over the baseline multiprogramming approach with minimal hardware overhead. |
| Starting Page | 230 |
| Ending Page | 242 |
| Page Count | 13 |
| File Format | |
| ISSN | 01635964 |
| DOI | 10.1145/3007787.3001161 |
| Journal | ACM SIGARCH Computer Architecture News (CARN) |
| Volume Number | 44 |
| Issue Number | 3 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 1981-04-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Multi-kernel Gpus Scheduling Multiprogramming Resource management |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|