Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Lingamneni, Avinash Palem, Krishna |
| Copyright Year | 2013 |
| Abstract | Well over a decade ago, many believed that an engine of growth driving the semiconductor and computing industries---captured nicely by Gordon Moore’s remarkable prophecy (Moore’s law)---was speeding towards a dangerous cliff-edge. Ranging from expressions of concern to doomsday scenarios, the exact time when serious hurdles would beset us varied quite a bit---some of the more optimistic warnings giving Moore’s law until. Needless to say, a lot of people have spent time and effort with great success to find ways for substantially extending the time when we would encounter the dreaded cliff-edge, if not avoiding it altogether. Faced with this issue, we started approaching this in a decidedly different manner---one which suggested falling off the metaphorical cliff as a design choice, but in a controlled way. This resulted in devices that could switch and produce bits that are correct, namely of having the intended value, only with a probabilistic guarantee. As a result, the results could in fact be incorrect. Such devices and associated circuits and computing structures are now broadly referred to as inexact designs, circuits, and architectures. In this article, we will crystallize the essence of inexactness dating back to 2002 through two key principles that we developed: (i) that of admitting error in a design in return for resource savings, and subsequently (ii) making resource investments in the elements of a hardware platform proportional to the value of information they compute. We will also give a broad overview of a range of inexact designs and hardware concepts that our group and other groups around the world have been developing since, based on these two principles. Despite not being deterministically precise, inexact designs can be significantly more efficient in the energy they consume, their speed of execution, and their area needs, which makes them attractive in application contexts that are resilient to error. Significantly, our development of inexactness will be contrasted against the rich backdrop of traditional approaches aimed at realizing reliable computing from unreliable elements, starting with von Neumann’s influential lectures and further developed by Shannon-Weaver and others. |
| Starting Page | 1 |
| Ending Page | 23 |
| Page Count | 23 |
| File Format | |
| ISSN | 15399087 |
| e-ISSN | 15583465 |
| DOI | 10.1145/2465787.2465789 |
| Volume Number | 12 |
| Issue Number | 2s |
| Journal | ACM Transactions on Embedded Computing Systems (TECS) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-05-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Co-design EDA Moore’s law VLSI design Energy-accuracy trade-off Inexact circuit design Low power/energy Probabilistic CMOS |
| Content Type | Text |
| Resource Type | Article |
| Subject | Hardware and Architecture Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|