Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Mizukawa, H. Okabe, E. |
| Description | Author Affiliation: Mizukawa H ( Department of Anaesthesiology, Kanagawa Dental College, Japan.) |
| Abstract | 1. The effects of reactive oxygen intermediates derived from photoactivated rose bengal on the vascular reactivity have been evaluated in rabbit mesenteric artery ring preparations. The artery rings were exposed to xanthene dye rose bengal (50 nM) illuminated (6,000 lux) at 560 nm for 30 min. Spin trapping studies with 2,2,6,6-tetramethylpiperidine (TEMP) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) with electron spin resonance spectrometry were also conducted in solution (and not within tissues) to determine quantitatively the reactive oxygen species generated from photoactivated rose bengal. 2. Contraction of the ring preparations induced by noradrenaline (10(-8) to 10(-4) M) was attenuated by previous exposure to photolysed rose bengal; the observation that the pD2 decreased without a significant reduction in maximum tension generation is consistent with the view that receptor dysfunction may be involved in the effect of photolysed rose bengal. 3. Prior exposure to photolysed rose bengal of the ring preparations inhibited the endothelium-dependent relaxation evoked by acetylcholine (10(-6) M) and calcium ionophore A23187 (10(-7) M), but not the endothelium-independent relaxation evoked by nitroglycerin (10(-6) M). 4. A variety of scavengers, superoxide dismutase (33 units ml-1), catalase (32 units ml-1) and 1,3-dimethyl-2-thiourea (DMTU, 10 mM), which should eliminate the superoxide anion radical, H2O2 and the hydroxyl radical, had no effect on the attenuated responses to noradrenaline and acetylcholine induced by photolysed rose bengal. In contrast, the inhibition of the observed effect of photolysed rose bengal was obtained with addition of histidine (25 mM), a singlet molecular oxygen quencher. 5. It was found that photolysis of rose bengal from a 1:2:2:1 quartet, characteristic of the hydroxyl radical-DMPO spin adduct, which was effectively blunted by DMTU, superoxide dismutase and catalase whereas histidine was ineffective. The results of the electron spin resonance study also showed that a singlet molecular oxygen was produced by photoactivation of rose bengal; this was detected as singlet oxygen-TEMP product (TEMPO; 2,2,6,6-tetramethylpiperidine-N-oxyl). The formation of the TEMPO signal was strongly inhibited by histidine, but not by DMTU, superoxide dismutase and catalase. 6. It is suggested that the superoxide anion radical, H2O2 and hydroxyl radical are formed in addition to singlet molecular oxygen, and the data obtained from the present study indicate that singlet molecular oxygen is one of the most destructive oxygen species. Endothelium-dependent relaxation is quite vulnerable to singlet molecular oxygen. Singlet oxygen also depresses noradrenaline-induced contraction possibly via alpha-adrenoceptor dysfunction. This, in turn, may lead to vascular incompetence. |
| ISSN | 00071188 |
| e-ISSN | 14765381 |
| Journal | British Journal of Pharmacology |
| Issue Number | 1 |
| Volume Number | 121 |
| Language | English |
| Publisher | Wiley Online Library(on behalf of The British Pharmacological Society) |
| Publisher Date | 1997-05-01 |
| Publisher Place | Great Britain (UK) |
| Access Restriction | Open |
| Subject Keyword | Free Radical Scavengers Pharmacology Hydrogen Peroxide Adverse Effects Hydroxyl Radical Mesenteric Arteries Drug Effects Muscle, Smooth, Vascular Superoxides Acetylcholine Animals Catalase Cyclic N-Oxides Chemistry Electron Spin Resonance Spectroscopy Fluorescent Dyes Metabolism Radiation Effects Muscle Contraction Nitroglycerin Photolysis Rabbits Rose Bengal Spin Labels Spin Trapping Superoxide Dismutase Thiourea Analogs & Derivatives Ultraviolet Rays Vasodilator Agents Research Support, Non-U.S. Gov't |
| Content Type | Text |
| Resource Type | Article |
| Subject | Pharmacology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|