Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Guo, Cui Haymart, Megan R. Banerjee, Mousumi Gay, Brittany Wiebel, Jaime L. |
| Description | Author Affiliation: Banerjee M ( Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA Institute for Healthcare Policy and Innovation (IHPI), University of Michigan, Ann Arbor, MI 48109, USA.); Wiebel JL ( Endocrine Associates of Dallas, Dallas, TX, USA.); Guo C ( Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.); Gay B ( Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.); Haymart MR ( Institute for Healthcare Policy and Innovation (IHPI), University of Michigan, Ann Arbor, MI 48109, USA Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA meganhay@med.umich.edu.); |
| Abstract | Objective To determine whether the use of imaging tests after primary treatment of differentiated thyroid cancer is associated with more treatment for recurrence and fewer deaths from the disease. Design Population based retrospective cohort study. Setting Surveillance Epidemiology and End Results-Medicare database in the United States. Participants 28 220 patients diagnosed with differentiated thyroid cancer between 1998 and 2011. The study cohort was followed up to 2013, with a median follow-up of 69 months. Main outcome measures Treatment for recurrence of differentiated thyroid cancer (additional neck surgery, additional radioactive iodine treatment, or radiotherapy), and deaths due to differentiated thyroid cancer. We conducted propensity score analyses to assess the relation between imaging (neck ultrasound, radioiodine scanning, or positron emission tomography (PET) scanning) and treatment for recurrence (logistic model) and death (Cox proportional hazards model). Results From 1998 until 2011, we saw an increase in incident cancer (rate ratio 1.05, 95% confidence interval 1.05 to 1.06), imaging (1.13, 1.12 to 1.13), and treatment for recurrence (1.01, 1.01 to 1.02); the change in death rate was not significant. In multivariable analysis, use of neck ultrasounds increased the likelihood of additional surgery (odds ratio 2.30, 95% confidence interval 2.05 to 2.58) and additional radioactive iodine treatment (1.45, 1.26 to 1.69). Radioiodine scans were associated with additional surgery (odds ratio 3.39, 95% confidence interval 3.06 to 3.76), additional radioactive iodine treatment (17.83, 14.49 to 22.16), and radiotherapy (1.89, 1.71 to 2.10). Use of PET scans was associated with additional surgery (odds ratio 2.31, 95% confidence interval 2.09 to 2.55), additional radioactive iodine treatment (2.13, 1.89 to 2.40), and radiotherapy (4.98, 4.52 to 5.49). Use of neck ultrasounds or PET scans did not significantly affect disease specific survival (hazard ratio 1.14, 95% confidence interval 0.98 to 1.27, and 0.91, 0.77 to 1.07, respectively). However, radioiodine scans were associated with an improved disease specific survival (hazard ratio 0.70, 95% confidence interval 0.60 to 0.82). Conclusions The marked rise in use of imaging tests after primary treatment of differentiated thyroid cancer has been associated with an increased treatment for recurrence. However, with the exception of radioiodine scans in presumed iodine avid disease, this association has shown no clear improvement in disease specific survival. These findings emphasize the importance of curbing unnecessary imaging and tailoring imaging after primary treatment to patient risk. |
| ISSN | 09598138 |
| e-ISSN | 17561833 |
| Journal | BMJ (British Medical Journal) |
| Volume Number | 354 |
| Language | English |
| Publisher | British Medical Journal Publishing Group |
| Publisher Date | 2016-07-01 |
| Publisher Place | Great Britain (UK) |
| Access Restriction | Open |
| Subject Keyword | Medicine |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|