Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Bacala, Angelina M. |
| Abstract | Background In Monte Carlo simulations, the fine-tuning of linac beam parameters to produce a good match between simulated and measured dose profiles is a lengthy, time-consuming and resource-intensive process. The objective of this study is to utilize the results of the gamma-index analysis toolkit embedded inside the windows-based PRIMO software package to yield a truncated linac photon beam fine-tuning process. Methods Using PRIMO version 0.1.5.1307, a Varian Clinac 2100 is simulated at two nominal energy configurations of 6 MV and 10 MV for varying number of histories from 106 to more than 108. The dose is tallied on a homogeneous water phantom with dimensions 16.2 × 16.2 × 31.0 cm3 at a source-to-surface-distance of 100.0 cm. For each nominal energy setting, two initial electron beam energies are configured to reproduce the measured percent depth dose (PDD) distribution. Once the initial beam energy is fixed, several beam configurations are sequentially simulated to determine the parameters yielding good agreement with the measured lateral dose profiles. The simulated dose profiles are compared with the Varian Golden Beam Data Set (GBDS) using the gamma-index analysis method incorporating the dose-difference and distance-to-agreement criteria. The simulations are run on Pentium-type computers while the tuned 10 MV beam configuration is simulated at more than 108 histories using a virtual server in the Amazon.com Elastic Compute Cloud. Results The initial electron beam energy configuration that will likely reproduce the measured PDD is determined by comparing directly the gamma-index analysis results of two different beam configurations. The configuration is indicated to yield good agreement with data if the gamma-index passing rates using the 1%/1 mm criteria generally increase as the number of histories is increased. Additionally at the highest number of histories, the matching configuration gives a much higher passing rate at the 1%/1 mm acceptance criteria over the other competing configuration. With the matching initial electron beam energy known, this input to the subsequent simulations allows the fine-tuning of the lateral beam profiles to proceed at a fixed yet lower number of histories. In a three-stage serial optimization procedure, the first remaining beam parameter is varied and the highest passing rate at the 1%/1 mm criteria is determined. This optimum value is input to the second stage and the procedure is repeated until all the remaining beam parameters are optimized. The final tuned beam configuration is then simulated at much higher number of histories and the good agreement with the measured dose distributions is verified. Conclusions As physical nature is not stingy, it reveals at low statistics what is hidden at high statistics. In the matter of fine-tuning a linac to conform with measurements, this characteristic is exploited directly by the PRIMO software package. PRIMO is an automated, self-contained and full Monte Carlo linac simulator and dose calculator. It embeds the gamma-index analysis toolkit which can be used to determine all the parameters of the initial electron beam configuration at relatively lower number of histories before the full simulation is run at very high statistics. In running the full simulation, the Amazon.com compute cloud proves to be a very cost-effective and reliable platform. These results are significant because of the time required to run full-blown simulations especially for resource-deficient communities where there could just be one computer as their sole workhorse. |
| Related Links | https://ro-journal.biomedcentral.com/counter/pdf/10.1186/s13014-019-1455-1.pdf |
| Ending Page | 11 |
| Page Count | 11 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| DOI | 10.1186/s13014-019-1455-1 |
| Journal | Radiation Oncology |
| Issue Number | 1 |
| Volume Number | 15 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2020-01-06 |
| Access Restriction | Open |
| Subject Keyword | Cancer Research Oncology Radiotherapy Imaging Radiology Monte Carlo linac simulation PRIMO Linac beam fine-tuning Gamma-index analysis acceptance criteria Amazon.com elastic compute cloud |
| Content Type | Text |
| Resource Type | Article |
| Subject | Radiology, Nuclear Medicine and Imaging Oncology |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|