Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Lilli, Livia Santoro, Mario Masiello, Valeria Patarnello, Stefano Tagliaferri, Luca Marazzi, Fabio Capocchiano, Nikola Dino |
| Abstract | Background Analysis of Electronic Health Records (EHRs) is crucial in real-world evidence (RWE), especially in oncology, as it provides valuable insights into the complex nature of the disease. The implementation of advanced techniques for automated extraction of structured information from textual data potentially enables access to expert knowledge in highly specialized contexts. In this paper, we introduce MISTIC, a Natural Language Processing (NLP) approach to classify the presence or absence of metastasis in Italian EHRs, in the breast cancer domain. Methods Our approach consists of a transformer-based framework designed for few-shot learning, requiring a small labelled dataset and minimal computational resources for training. The pipeline includes text segmentation to improve model processing and topic analysis to filter informative content, ensuring relevant input data for classification. Results MISTIC was evaluated across multiple data sources, and compared to several benchmark methodologies, ranging from a pattern-matching system, composed of regex and semantic rules, to BERT-based models implemented in a zero-shot learning setup and Large Language Models (LLMs). The results demonstrate the generalization of our approach, achieving an F-Score above 87% on all the sources, and outperforming the other experiments, with an overall F-Score of 91.2%. Conclusions MISTIC achieves high performance in the Italian metastasis classification task, outperforming rule-based systems, zero-shot BERT models, and LLMs. Its few-shot learning setup offers a computationally efficient alternative to large-scale models, while its segmentation and topic analysis steps enhance explainability by explicitly linking predictions to key textual elements. Furthermore, MISTIC demonstrates strong generalization across different data sources, reinforcing its potential as a scalable and transparent solution for clinical text classification. By extracting high-quality metastatic information from diverse textual data, MISTIC supports medical researchers in analyzing unstructured and highly informative content across a wide range of medical reports. In doing so, it enhances data accessibility and interpretability, addressing a critical gap in health informatics and clinical practice. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-025-02994-w.pdf |
| Ending Page | 11 |
| Page Count | 11 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-025-02994-w |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 25 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2025-04-10 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Metastatic breast cancer Natural language processing Sentence transformer Large language model Few shot learning Electronic health record |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|