Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Gu, Tianshu Pan, Wensen Yu, Jing Ji, Guang Meng, Xia Wang, Yongjun Li, Minghui |
| Abstract | Background The COVID-19 pandemic has highlighted the crucial role of artificial intelligence (AI) in predicting mortality and guiding healthcare decisions. However, AI models may perpetuate or exacerbate existing health disparities due to demographic biases, particularly affecting racial and ethnic minorities. The objective of this study is to investigate the demographic biases in AI models predicting COVID-19 mortality and to assess the effectiveness of transfer learning in improving model fairness across diverse demographic groups. Methods This retrospective cohort study used a population-based dataset of COVID-19 cases from the Centers for Disease Control and Prevention (CDC), spanning the years 2020–2024. The study analyzed AI model performance across different racial and ethnic groups and employed transfer learning techniques to improve model fairness by adapting pre-trained models to the specific demographic and clinical characteristics of the population. Results Decision Tree (DT) and Random Forest (RF) models consistently showed improvements in accuracy, precision, and ROC-AUC scores for Non-Hispanic Black, Hispanic/Latino, and Asian populations. The most significant precision improvement was observed in the DT model for Hispanic/Latino individuals, which increased from 0.3805 to 0.5265. The precision for Asians or Pacific Islanders in the DT model increased from 0.4727 to 0.6071, and for Non-Hispanic Blacks, it rose from 0.5492 to 0.6657. Gradient Boosting Machines (GBM) produced mixed results, showing accuracy and precision improvements for Non-Hispanic Black and Asian groups, but declines for the Hispanic/Latino and American Indian groups, with the most significant decline in precision, which dropped from 0.4612 to 0.2406 in the American Indian group. Logistic Regression (LR) demonstrated minimal changes across all metrics and groups. For the Non-Hispanic American Indian group, most models showed limited benefits, with several performance metrics either remaining stable or declining. Conclusions This study demonstrates the potential of AI in predicting COVID-19 mortality while also underscoring the critical need to address demographic biases. The application of transfer learning significantly improved the predictive performance of models across various racial and ethnic groups, suggesting these techniques are effective in mitigating biases and promoting fairness in AI models. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-025-02862-7.pdf |
| Ending Page | 11 |
| Page Count | 11 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-025-02862-7 |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 25 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2025-01-17 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems COVID-19 Artificial intelligence Mortality prediction Demographic bias Health disparities Transfer learning |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|