Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Davari, Fereshteh Nasr Isfahani, Mehdi Atighechian, Arezoo Ghobadian, Erfan |
| Abstract | Objective Overcrowding and extended waiting times in emergency departments are a pervasive issue, leading to patient dissatisfaction. This study aims to compare the efficacy of two process mining and simulation models in identifying bottlenecks and optimizing patient flow in the emergency department of Al-Zahra Hospital in Isfahan. The ultimate goal is to reduce patient waiting times and alleviate population density, ultimately enhancing the overall patient experience. Methods This study employed a descriptive, applied, cross-sectional, and retrospective design. The study population consisted of 39,264 individuals referred to Al-Zahra Hospital, with a sample size of at least 1,275 participants, selected using systematic random sampling at a confidence level of 99%. Data were collected through a questionnaire and the Hospital Information System (HIS). Statistical analysis was conducted using Excel software, with a focus on time-averaged data. Two methods of simulation and process mining were utilized to analyze the data. First, the model was run 1000 times using ARENA software, with simulation techniques. In the second step, the emergency process model was discovered using process mining techniques through Access software, and statistical analysis was performed on the event log. The relationships between the data were identified, and the discovered model was analyzed using the Fuzzy Miner algorithm and Disco tool. Finally, the results of the two models were compared, and proposed scenarios to reduce patient waiting times were examined using simulation techniques. Results The analysis of the current emergency process at Al-Zahra Hospital revealed that the major bottlenecks in the process are related to waiting times, inefficient implementation of doctor’s orders, delays in recording patient test results, and congestion at the discharge station. Notably, the process mining exercise corroborated the findings from the simulation, providing a comprehensive understanding of the inefficiencies in the emergency process. Next, 34 potential solutions were proposed to reduce waiting times and alleviate these bottlenecks. These solutions were simulated using Arena software, allowing for a comprehensive evaluation of their effectiveness. The results were then compared to identify the most promising strategies for improving the emergency process. Conclusion In conclusion, the results of this research demonstrate the effectiveness of using simulation techniques and process mining in making informed, data-driven decisions that align with available resources and conditions. By leveraging these tools, unnecessary waste and additional expenses can be significantly reduced. The comparative analysis of the 34 proposed scenarios revealed that two solutions stood out as the most effective in improving the emergency process. Scenario 19, which involves dedicating two personnel to jointly referring patients to the ward, and scenario 34, which creates a dedicated discharge hall, have the potential to create a more favorable situation. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02704-y.pdf |
| Ending Page | 14 |
| Page Count | 14 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-024-02704-y |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 24 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-10-09 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Comparison Simulation Process mining Process management Emergency department management |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|