Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Chauhan, Vinod Kumar Thakur, Anshul O’Donoghue, Odhran Rohanian, Omid Molaei, Soheila Clifton, David A. |
| Abstract | Background Irregular time series (ITS) are common in healthcare as patient data is recorded in an electronic health record (EHR) system as per clinical guidelines/requirements but not for research and depends on a patient’s health status. Due to irregularity, it is challenging to develop machine learning techniques to uncover vast intelligence hidden in EHR big data, without losing performance on downstream patient outcome prediction tasks. Methods In this paper, we propose Perceiver, a cross-attention-based transformer variant that is computationally efficient and can handle long sequences of time series in healthcare. We further develop continuous patient state attention models, using Perceiver and transformer to deal with ITS in EHR. The continuous patient state models utilise neural ordinary differential equations to learn patient health dynamics, i.e., patient health trajectory from observed irregular time steps, which enables them to sample patient state at any time. Results The proposed models’ performance on in-hospital mortality prediction task on PhysioNet-2012 challenge and MIMIC-III datasets is examined. Perceiver model either outperforms or performs at par with baselines, and reduces computations by about nine times when compared to the transformer model, with no significant loss of performance. Experiments to examine irregularity in healthcare reveal that continuous patient state models outperform baselines. Moreover, the predictive uncertainty of the model is used to refer extremely uncertain cases to clinicians, which enhances the model’s performance. Code is publicly available and verified at https://codeocean.com/capsule/4587224 . Conclusions Perceiver presents a computationally efficient potential alternative for processing long sequences of time series in healthcare, and the continuous patient state attention models outperform the traditional and advanced techniques to handle irregularity in the time series. Moreover, the predictive uncertainty of the model helps in the development of transparent and trustworthy systems, which can be utilised as per the availability of clinicians. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02514-2.pdf |
| Ending Page | 16 |
| Page Count | 16 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-024-02514-2 |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 24 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-05-03 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Deep learning Neural ordinary differential equations Irregular time series Electronic health records Perceiver In-hospital-mortality MIMIC-III |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|