Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Kanar, Muharrem Sülek, Yusuf Seymenoğlu, Tolga Hayrettin Armağan, Raffi |
| Abstract | Background With the assistance of smart fixator technologies, the correction of complex deformities has been facilitated; however, the accurate integration of specialized radiographs and measurements into the system remains the greatest disadvantage, necessitating specialized imaging and an experienced team. When inexperienced technicians and doctors perform these specialized postoperative radiographs, excessive exposure of the patient and team to radioactive rays exacerbates inadequacies in measurements and delays the correction of residual deformities due to angular and translational adjustments. In this study, we compared postoperative measurements with those taken peroperatively via fluoroscopy, hypothesizing that it reduces the exposure of the patient and team to radioactive rays, allows for more accurate and timely correction of deformities and assembly parameters, and reduces time and costs. Methods Between 2013 and 2022, 84 patients with bone deformities were retrospectively reviewed. All patients had bone deformities and were treated with computer-assisted circular external fixator systems (Ca-CEF). Assembly parameter measurements began to be corrected via artificial neural network software via peroperative fluoroscopy in 37 patients and postoperative radiography in 47 patients. The surgical duration for all patients, peroperative measurement values, and number of radiographs taken on postoperative day 1, week, and month until deformity correction were recorded. Results The duration until deformity correction was shorter in patients who underwent postoperative measurements (mean 50.24 days) than in those who underwent peroperative measurements (mean 42.31 days), but this difference was not statistically significant (p = 0.102). The surgical duration was significantly shorter in patients with postoperative measurements (mean of 130.37 min) than in those with peroperative measurements (mean of 155.88 min) (p = 0.045). For patients with postoperative measurements, 56.04 postoperative radiographs were taken. In contrast, patients with peroperative measurements had fewer radiographs totaling 28.7. This difference was statistically significant (p < 0.01). There was no statistically significant difference in the fluoroscopy dose between patients with postoperative measurements (mean 18.54 mGy) and those with peroperative measurements (mean 22.22 mGy) (p = 0.105). Conclusion To achieve accurate assembly parameters, minimizing X-ray exposure is crucial but can pose challenges. Our results showed that despite an average increase of 25 min in surgical duration, the time taken for deformity correction was shorter. Additionally, we obtained fewer postoperative radiographs, indicating reduced radiation exposure. |
| Related Links | https://bmcmusculoskeletdisord.biomedcentral.com/counter/pdf/10.1186/s12891-024-08056-y.pdf |
| Ending Page | 10 |
| Page Count | 10 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14712474 |
| DOI | 10.1186/s12891-024-08056-y |
| Journal | BMC Musculoskeletal Disorders |
| Issue Number | 1 |
| Volume Number | 25 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-11-20 |
| Access Restriction | Open |
| Subject Keyword | Orthopedics Rehabilitation Rheumatology Sports Medicine Internal Medicine Epidemiology Taylor spatial frame Hexapod Computer assisted Mounting parameter Deformity correction Intraoperative measurement Postoperative measurement |
| Content Type | Text |
| Resource Type | Article |
| Subject | Orthopedics and Sports Medicine Rheumatology |
| Journal Impact Factor | 2.2/2023 |
| 5-Year Journal Impact Factor | 2.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|