Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Li, Luming Li, Dawei Geng, Ziming Huo, Zhenxin Kang, Yuxiang Guo, Xiangxiang Yuan, Bing Xu, Baoshan Wang, Tao |
| Abstract | Background Although previous studies have suggested a possible association between bone mineral density (BMD) and intervertebral disc degeneration (IDD), the causal relationship between them remains unclear. Evidence from accumulating studies indicates that they might mutually influence one another. However, observational studies may be affected by potential confounders. Meanwhile, Mendelian randomization (MR) study can overcome these confounders to assess causality. Objectives This Mendelian randomization (MR) study aimed to explore the causal effect of bone mineral density (BMD) on intervertebral disc degeneration (IDD). Methods Summary data from genome-wide association studies of bone mineral density (BMD) and IDD (the FinnGen biobank) have been acquired. The inverse variance weighted (IVW) method was utilized as the primary MR analysis approach. Weighted median, MR-Egger regression, weighted mode, and simple mode were used as supplements. The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were performed to assess horizontal pleiotropy. Cochran’s Q test evaluated heterogeneity. Leave-one-out sensitivity analysis was further conducted to determine the reliability of the causal relationship. Multivariate MR (MVMR) analyses used multivariable inverse variance-weighted methods to individually and jointly adjust for four potential confounders, body mass index (BMI), Type2 diabetes, hyperthyroidism and smoking. A reverse MR analysis was conducted to assess potential reverse causation. Results In the univariate MR analysis, femoral neck bone mineral density (FNBMD), heel bone mineral density (eBMD), lumbar spine bone mineral density (LSBMD), and total body bone mineral density (TB BMD) had a direct causal effect on intervertebral disc degeneration (IDD) [FNBMD-related analysis: OR(95%CI) = 1.17 (1.04 to 1.31), p = 0.008, eBMD-related analysis: OR(95%CI) = 1.06 (1.01 to 1.12), p = 0.028, LSBMD-related analysis: OR(95%CI) = 1.20 (1.10 to 1.31), p = 3.38E-7,TB BMD-related analysis: OR(95%CI) = 1.20 (1.12 to 1.29), p = 1.0E-8]. In the MVMR analysis, it was revealed that, even after controlling for confounding factors, heel bone mineral density (eBMD), lumbar spine bone mineral density (LSBMD), and total body bone mineral density (TB BMD) still maintained an independent and significant causal association with IDD(Adjusting for heel bone mineral density: beta = 0.073, OR95% CI = 1.08(1.02 to 1.14), P = 0.013; Adjusting for lumbar spine bone mineral density: beta = 0.11, OR(95%CI) = 1.12(1.02 to 1.23), P = 0.03; Adjusting for total body bone mineral density: beta = 0.139, OR95% CI = 1.15(1.06 to 1.24), P = 5.53E − 5). In the reverse analysis, no evidence was found to suggest that IDD has an impact on BMD. Conclusions The findings from our univariate and multivariable Mendelian randomization analysis establish a substantial positive causal association between BMD and IDD, indicating that higher bone mineral density may be a significant risk factor for intervertebral disc degeneration. Notably, no causal effect of IDD on these four measures of bone mineral density was observed. Further research is required to elucidate the underlying mechanisms governing this causal relationship. |
| Related Links | https://bmcmusculoskeletdisord.biomedcentral.com/counter/pdf/10.1186/s12891-024-07631-7.pdf |
| Ending Page | 10 |
| Page Count | 10 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14712474 |
| DOI | 10.1186/s12891-024-07631-7 |
| Journal | BMC Musculoskeletal Disorders |
| Issue Number | 1 |
| Volume Number | 25 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-07-05 |
| Access Restriction | Open |
| Subject Keyword | Orthopedics Rehabilitation Rheumatology Sports Medicine Internal Medicine Epidemiology Osteoporosis Bone mineral density Intervertebral disc degeneration Mendelian randomization (MR) GWAS data |
| Content Type | Text |
| Resource Type | Article |
| Subject | Orthopedics and Sports Medicine Rheumatology |
| Journal Impact Factor | 2.2/2023 |
| 5-Year Journal Impact Factor | 2.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|