Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | He, Miao Liu, Jian Deng, Xu |
| Abstract | Background Studies have shown that on the coronal plane, whether the direction of the distal locking screw is parallel to the tangent line of the tibiotalar joint can be used to determine whether there is varus or valgus deformity after the treatment of distal tibial fractures with intramedullary nail (IMN) fixation. However, there has been no statistical analysis of the included angle on the coronal plane, and there have been no reports on whether there is a relationship between the direction of the distal locking screw on the sagittal plane or the included angle of the tangent line of the tibiotalar joint and the postoperative alignment of distal tibial fractures treated with IMN fixation. Objective Our aim was to evaluate the relationship between the angles formed by the distal locking screw and the tibiotalar joint tangent (ADTTs) on the sagittal and coronal planes and postoperative alignment in the treatment of distal tibial fractures with IMN fixation. Methods We performed a retrospective analysis of 100 patients with distal tibial fractures treated with IMN fixation using the suprapatellar approach. On the coronal and sagittal planes, the ADTTs were arranged from small to large and divided into 4 groups, namely, groups A, B, C and D. One-way ANOVA was used to compare the lateral distal tibial angle (LDTA) and anterior distal tibial angle (ADTA) among all groups, and the chi-square test was used to compare the incidence of postoperative tibial misalignment among all groups. Univariate analysis was performed using chi-square tests to identify factors that might be associated with dislocation, including fibular open reduction and internal fixation (ORIF), limited open reduction, ADTT, IMN diameter, injury mechanism, open vs. closed fracture, comminution, and fibular fracture level. Then, the statistically significant variables in the univariate analysis were included in a multivariate logistic regression equation to evaluate the independent factors related to misalignment. Results On the coronal plane, the ADTTs of groups A, B, C and D were < 0°, 0°-1.3°, 1.3°-2.7° and > 2.7°, respectively. The mean LDTAs of groups B and C (0°-1.3° and 1.3°-2.7°), group A (< 0°) and group D (> 2.7°) were 89.5 ± 1.6°, 92.0 ± 3.2° and 85.8 ± 3.5°, respectively (P < 0.01). Deformity greater than 5° were more likely in groups A and D than groups B and C [14 of 50 (28%) vs. 1 of 50 (2%), P < 0.001]. On the sagittal plane, the ADTTs of groups A, B, C and D were < 8.9°, 8.9°-10.4°, 10.4°-11.7° and > 11.8°, respectively. The average ADTAs of groups B and C (8.9°-10.4° and 10.4°-11.7°), group A (< 8.9°) and group D (> 11.8°) were 80.4 ± 1.3°, 83.1 ± 3.7° and 77.9 ± 2.5°, respectively (P < 0.01). Deformity greater than 5° was more likely in groups A and D than groups B and C [13 of 50 (26%) vs. 0 of 50 (0%), P < 0.001]. An ADTT of 0°-2.7° on the coronal plane and 8.9°-11.7° on the sagittal plane (OR: 0.08, P = 0.02) and limited open reduction (OR: 0.21, P < 0.01) were independent factors that reduced the likelihood of misalignment. Conclusion The alignment of distal tibial fractures after surgery is sensitive to the ADTT and use of limited open reduction. Controlling the ADTT between 0° and 2.7° on the coronal plane and between 8.9° and 11.7° on the sagittal plane is helpful to reduce the occurrence of misalignment after the treatment of distal tibial fractures by IMN fixation. |
| Related Links | https://bmcmusculoskeletdisord.biomedcentral.com/counter/pdf/10.1186/s12891-022-05641-x.pdf |
| Ending Page | 7 |
| Page Count | 7 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14712474 |
| DOI | 10.1186/s12891-022-05641-x |
| Journal | BMC Musculoskeletal Disorders |
| Issue Number | 1 |
| Volume Number | 23 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2022-07-14 |
| Access Restriction | Open |
| Subject Keyword | Orthopedics Rehabilitation Rheumatology Sports Medicine Internal Medicine Epidemiology Intramedullary nail Tibial fracture Misalignment |
| Content Type | Text |
| Resource Type | Article |
| Subject | Orthopedics and Sports Medicine Rheumatology |
| Journal Impact Factor | 2.2/2023 |
| 5-Year Journal Impact Factor | 2.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|