Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Vir, Anil B. Kulkarni, Shekhar R. Picardo, J. R. Sahu, Avinash Pushpavanam, S. |
| Copyright Year | 2013 |
| Abstract | Two-phase parallel microflows, i.e., stratified flow and core-annular flow, have many applications in lab-on-chip devices. These include transport and reaction processes, such as liquid–liquid extraction and phase transfer catalysis. The phase holdup (fraction of the microchannel volume occupied by a specified phase) is a key parameter of these flow systems. In this work, mathematical models based on fundamental principles are used to predict the phase holdup in stratified flow and core-annular flow. For stratified flow, a two-dimensional model of flow in a rectangular channel of arbitrary aspect ratio is considered. A simpler one-dimensional model of stratified flow between infinite parallel plates is also analyzed. In the case of core-annular flow, axisymmetry is assumed in the model. The results of the models agree well with published experimental results. The dependence of phase holdup on the flow-rate fraction (the primary operating variable which can be controlled experimentally) is studied in detail. The nature of this relationship varies with the ratio of fluid viscosities and the channel’s aspect ratio (in the case of stratified flow). In the literature, the holdup is sometimes erroneously assumed to be identical to the flow-rate fraction. It is shown that this is not possible in the case of core-annular flow, while in stratified flow it is true only for a unique critical flow-rate. This critical flow-rate is viscosity dependent. The aspect ratio of the channel is found to have a considerable influence on the holdup in stratified flow when the fluids have different viscosities. However, even in such cases, there exists a point of geometric invariance at which the holdup is independent of the aspect ratio. At this point, the simple one-dimensional model of stratified flow can predict the holdup with complete accuracy. |
| Starting Page | 1057 |
| Ending Page | 1067 |
| Page Count | 11 |
| File Format | |
| ISSN | 16134982 |
| Journal | Microfluidics and Nanofluidics |
| Volume Number | 16 |
| Issue Number | 6 |
| e-ISSN | 16134990 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2013-10-05 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Holdup Flow-rate fraction Stratified flow Core-annular flow Microflows Engineering Fluid Dynamics Biomedical Engineering Analytical Chemistry Nanotechnology and Microengineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nanoscience and Nanotechnology Materials Chemistry Condensed Matter Physics Electronic, Optical and Magnetic Materials |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|