Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Maharjan, Madan Eckstein, Yoram |
| Copyright Year | 2013 |
| Abstract | Tracing fractures under glacial drift commonly involves costly and often unfeasible (in populated areas) geophysical methods or outcrop surveys, often far from the area of interest. A hypothesis is tested, that the specific capacity data for wells penetrating through glacial drift into a bedrock aquifer display two statistical populations: assuming uniform well construction, the wells with high specific capacity penetrate transmissive fracture zones, while those with low specific capacity encounter non-fractured rock characterized by primary porosity. The hypothesis was tested on 617 wells drilled into the Pennsylvanian Sharon Sandstone, Geauga County, Ohio (USA). Hydraulic conductivity, calculated using the Cooper and Jacob (1946) approximation to Theis’ non-equilibrium radial flow equation, followed quasi-log-normal distribution (geometric mean 9.88 × 10$^{−6}$ m/s). The lower values presumably correspond to primary porosity, and higher values correspond to bedrock fracture zones. The higher hydraulic conductivity followed two distinct orientations (N34°E, N44°W), corresponding with the regional fracture pattern of the Allegheny Plateau. A variogram showed that the wells within a kilometer of each other correlate and that wells penetrating the thicker glacial blanket have lower hydraulic conductivity and larger drawdown.Cooper and Jacob (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history, Am. Geoph. Union Trans. 27/4:526–534.Localiser des fractures sous un dépôt glaciaire implique couramment des méthodes géophysiques coûteuses et souvent inapplicables (dans les zones peuplées) ou des relevés d’affleurements souvent loin de la zone d’intérêt. On a testé une méthode basée sur le fait que la productivité des forages traversant une formation glaciaire jusqu’à un substrat aquifère se répartit statistiquement en deux populations : en supposant des ouvrages de constitution similaire, les forages de grande productivité pénètrent dans des zones de fractures transmissives, tandis que ceux de faible productivité recoupent une roche non fracturée caractérisée par une porosité interstitielle. La méthode a été testée sur 617 ouvrages forés dans le Grès de Sharon, Pennsylvanie, Geauga County, Ohio (USA). La conductivité hydraulique, calculée en utilisant l’approximation de Cooper et Jacob (1946) de l’équation d’écoulement radial transitoire de Theis suit une distribution quasiment log-normale (moyenne géométrique 9.88 × 10$^{−6}$ m/s). Les valeurs basses correspondent probablement à une porosité primaire, et les valeurs élevées à des zones de substrat fracturé. La conductivité hydraulique la plus élevée jalonne les deux orientations distinctes (N34°E, N44°W), correspondant au tracé de la fracture régionale du Plateau Allegheny. Un variogramme a montré que les forages distants de 1 km sont corrélés et que les forages pénétrant la couverture glaciaire plus épaisse ont une conductivité hydraulique plus basse et présentent un plus grand rabattement. Cooper and Jacob (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history (Une méthode graphique généralisée pour évaluer les constantes de formations et résumer l’histoire des forages), Am. Geoph. Union Trans. 27/4:526–534La detección de fracturas bajo un derrubio glacial comúnmente involucra métodos geofísico costosos y a menudo no factibles (en áreas pobladas) o relevamientos de afloramientos, a menudo lejos del área de interés. Se testeó una hipótesis, que los datos de capacidad específica para pozos que penetran a través del derrubio glacial en un acuífero de basamento presenta dos poblaciones estadísticas: asumiendo una construcción uniforme de pozos, los pozos con una capacidad específica alta penetran en las zonas de fracturas transmisivas, mientras que aquellas con una baja capacidad específica encuentran rocas no fracturadas caracterizadas por una porosidad primaria. La hipótesis fue probada en 617 pozos perforados en la Pennsylvanian Sharon Sandstone, Geauga County, Ohio (EEUU). La conductividad hidráulica, calculada usando la aproximación de Cooper y Jacob (1946) para la ecuación de flujo radial de no equilibrio de Theis, siguió la distribución cuasi log normal (media geométrica de 9.88 × 10$^{−6}$ m/s). Los valores más bajos presumiblemente corresponden a la porosidad primaria, y los altos valores corresponden a zonas de fractura del basamento. La conductividad hidráulica más alta siguió dos distintas orientaciones (N34°E, N44°W), correspondientes con el esquema de la fractura regional del Allegheny Plateau. Un variograma mostró que los pozos dentro de una distancia de un kilómetro entre cada uno de ellos se correlaciona y que los pozos que penetran una mayor espesor del manto glacial tienen una menor conductividad hidráulica y una mayor depresión. Cooper and Jacob (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history (Un método gráfico generalizado para evaluar las constantes de formación y el resumen de la historia de campos de pozos) Am. Geoph. Union Trans. 27/4:526–534.追踪冰川层下的断裂通常涉及费用很高的、常常是(在人口众多地区)难以实现的地球物理方法或出露岩层勘查,常常是离感兴趣的 区域非常远。进行了一项假设,即穿透冰川层进入基岩含水层的 井单位出水量展现了两个 统计总体:假设井建设统一,单位出水量很高的 井穿透导水的断裂带,而单位出水量 低的井遇到了具原始孔隙度的非断裂岩层石。在美国俄亥俄州Geauga县宾夕法尼亚系沙伦砂岩层617口井进行了假设实验。采用与Theis’ 非均衡辐射流公式近似的Cooper 和 Jacob (1946)数值计算的渗透系数遵循类似对数正态分布(几何平均数9.88x10$^{-6}$ m/s)。下限值可假定相当于原生孔隙度,上限值相当于基岩断裂带。较高的渗透系数遵循连个 明显的方向(N34$^{o}$E, N44$^{o}$W),与Allegheny高原的区域断裂模式相一致。变量图显示一公里之内相关联的井和穿透较厚冰川层的井具有较低的导水率和较大的降深。Cooper和 Jacob (1946)概括了用于评估形成常数和总结井场历史的图解法。O traçado de fraturas sob depósitos glaciares envolve geralmente métodos geofísicos ou levantamentos de afloramentos caros e frequentemente inviáveis (em área povoadas), muitas vezes longe da área de interesse. É testada aqui uma hipótese em que os dados de capacidade específica para furos que penetram através de formações glaciares num aquífero do bedrock exibem duas populações estatísticas: assumindo a construção uniforme dos furos, os furos com elevada capacidade específica penetram zonas de fraturas transmissivas, enquanto os que apresentam baixa capacidade específica intersetam rocha não fraturada, caraterizada pela porosidade primária. Esta hipótese foi testada em 617 furos perfurados no Arenito Pensilvaniano Sharon, no Condado de Geauga, Ohio (EUA). A condutividade hidráulica, calculada através da aproximação de Cooper e Jacob (1946) à equação de escoamento radial em não equilibrio de Theis, seguiu uma distribuição quase log-normal (média geométrica 9.88 × 10$^{−6}$ m/s). Os valores mais baixos correspondem, presumivelmente, à porosidade primária, e os mais elevados correspondem às zonas de fratura do bedrock. As maiores condutividades hidráulicas seguem duas orientações distintas (N34°E, N44°W), correspondendo ao padrão de fraturação regional do Planalto de Allegheny. Um variograma mostrou que os furos situados a uma distância inferior a um quilómetro entre si se correlacionam e que os furos que penetram a cobertura glaciar mais espessa apresentam condutividade hidráulica mais baixa e maior rebaixamento. Cooper e Jacob (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history (Um método gráfico genérico para avaliação de constantes de formação e resumir a história de campos de captação), Am. Geoph. Union Trans. 27/4:526–534. |
| Starting Page | 1889 |
| Ending Page | 1900 |
| Page Count | 12 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 21 |
| Issue Number | 8 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2013-09-17 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Fractured rocks under glacial drift Hydraulic properties Groundwater hydraulics Lineaments USA Hydrogeology Hydrology/Water Resources Geology Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|