Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Karahan, Halil Ayvaz, M. Tamer |
| Copyright Year | 2008 |
| Abstract | An artificial neural network (ANN) model is proposed for the simultaneous determination of transmissivity and storativity distributions of a heterogeneous aquifer system. ANNs may be useful tools for parameter identification problems due to their ability to solve complex nonlinear problems. As an extension of previous study—Karahan H, Ayvaz MT (2006) Forecasting aquifer parameters using artificial neural networks, J Porous Media 9(5):429–444—the performance of the proposed ANN model is tested on a two-dimensional hypothetical aquifer system for transient flow conditions. In the proposed ANN model, Cartesian coordinates of observation wells, associated piezometric heads and observation time are used as inputs while corresponding transmissivity and storativity values are used as outputs. The training, validation and testing processes of the ANN model are performed under two scenarios. In scenario 1, all the sampled data are used through the simulation time. However, in the scenario 2, there are data gaps due to irregular observations. By using the determined synaptic network weights, transmissivity and storativity distributions are predicted. In addition, the performance of the proposed ANN is tested for different noise data conditions. Results showed that the developed ANN model may be used in simultaneous aquifer parameter estimation problems.Un modèle de réseau neuronal artificel (ANN) est proposé pour la détermination simultanée des distributions des transmissivités et coefficients d’emmagasinement dans un système aquifère hétérogène. Les ANN peuvent constituer des outils utiles pour les problèmes d’identification de paramètres, grâce à leur capacité à résoudre des problèmes complexes non-linéaires. Dans la continuité de l’étude précédente—Karahan H, Ayvaz MT (2006) Forecasting aquifer parameters using artificial neural networks [Estimation des paramètres des aquifères par un réseau neuronal artificiel], J Porous Media 9(5):429–444)—les performances du modèle ANN proposé sont éprouvées sur un système aquifère bidimensionnel hypothétique en régime transitoire. Dans le modèle ANN proposé, les coordonnées cartésiennes des piézomètres, leurs niveaux piézométriques et les temps d’observation sont utilisés comme entrées, et les valeurs de transmissivité et coefficients d’emmagasinement correspondants comme sorties. Les procédures de mise en œuvre, de validation et de test du modèle ANN suivent deux scénarios différents. Dans le scénario 1, toutes les données acquises sont utilisées lors de la simulation, tandis que les données présentent des lacunes dues à l’irrégularité des observations dans le scénario 2. Les distributions des transmissivités et coefficients d’emmagasinement sont estimées à partir des pondérations du réseau synaptique. Les résultats ont démontré que le modèle ANN développé peut être utilisé dans le cas de problèmes simultanés d’estimation des paramètres des aquifères.Se propone un modelo de red neural artificial (RNA) para la determinación simultánea de las distribuciones del coeficiente de almacenamiento y de transmisividad de un sistema de acuífero heterogéneo. Las RNA pueden ser herramientas útiles en problemas de identificación de parámetros debido a su capacidad para resolver problemas complejos no lineales. Como parte de la ampliación de un estudio previo—Karahan H, Ayvaz MT (2006) Forecasting aquifer paramters using artificial neural networks [Predicción de parámetros de acuífero usando redes neurales artificiales], J Porous Media 9(5):429–444—se evalúa el desempeño del modelo propuesto RNA en un sistema acuífero hipotético de dos dimensiones en condiciones de flujo transitorio. En el modelo RNA propuesto se usan como entradas las coordenadas Cartesianas de pozos de observación, presiones piezométricas asociadas y tiempo de observación mientras que los valores correspondientes del coeficiente de almacenamiento y de transmisividad se usan como salidas. Se utilizan dos escenarios para los procesos de evaluación, validación y entrenamiento del modelo RNA. En el escenario 1 todos los datos muestreados se usan a través del tiempo de simulación. Sin embargo, en el escenario 2 existen brechas en los datos debido a observaciones irregulares. Mediante el uso de pesos de redes sinápticas determinados se predicen distribuciones de coeficiente de almacenamiento y de transmisividad. Además se evalúa el desempeño de la RNA propuesta para distintas condiciones de datos con ruido. Los resultados muestran que el modelo RNA puede ser usado en problemas de estimación simultánea de parámetros de acuíferos. |
| Starting Page | 817 |
| Ending Page | 827 |
| Page Count | 11 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 16 |
| Issue Number | 5 |
| e-ISSN | 14350157 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2008-02-05 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Parameter identification Inverse modeling Neural networks Multi-parameters Groundwater flow Waste Water Technology Water Pollution Control Water Management Aquatic Pollution Geology Hydrogeology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|