Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Li, Xian Shu, Longcang Liu, Lihong Yin, Dan Wen, Jinmei |
| Copyright Year | 2012 |
| Abstract | Jinci Spring in Shanxi, north China, is a major local water source. It dried up in April 1994 due to groundwater overexploitation. The groundwater system is complex, involving many nonlinear and uncertain factors. Artificial neural network (ANN) models are statistical techniques to study parameter nonlinear relationships of groundwater systems. However, ANN models offer little explanatory insight into the mechanisms of prediction models. Sensitivity analysis can overcome this shortcoming. In this study, a back-propagation neural network model was built based on the relationship between groundwater level and its sensitivity factors in Jinci Spring Basin; these sensitivity factors included precipitation, river seepage, mining drainage, groundwater withdrawals and lateral discharge to the associated Quaternary aquifer. All the sensitivity factors were analyzed with Garson’s algorithm based on the connection weights of the neural network model. The concept of “sensitivity range” was proposed to describe the value range of the input variables to which the output variables are most sensitive. The sensitivity ranges were analyzed by a local sensitivity approach. The results showed that coal mining drainage is the most sensitive anthropogenic factor, having a large effect on groundwater level of the Jinci Spring Basin.La Source Jinci dans le Shanxi, nord de la Chine, est une importante ressource en eau locale. Elle s’est asséchée en avril 1994 du fait de la surexploitation des eaux souterraines. Le système aquifère est complexe, impliquant de nombreux facteurs non-linéaires et incertains. Les modèles par réseaux neuronaux artificiels (RNA) sont des techniques statistiques qui permettent d’étudier les paramètres des relations non-linéaires des systèmes aquifères. Toutefois, les modèles RNA n’offrent qu’une faible partie de la vision explicative des mécanismes des modèles prédictifs. Les analyses de sensibilité peuvent surmonter ce défaut. Dans cette étude, un modèle par réseaux neuronaux à rétro propagation a été construit à partir de la relation entre le niveau des eaux souterraines et de ses facteurs de sensibilité dans le Bassin de la Source Jinci. Ces facteurs comprennent : les précipitations, l’infiltration des eaux de la rivière, le drainage par les mines, les prélèvements dans la nappe et la vidange latérale vers l’aquifère quaternaire associé. Tous les facteurs de sensibilité ont été analysés avec l’algorithme de Garson basé sur les pondérations de connexion du réseau neuronal. Le concept de «plage de sensibilité» a été proposé pour décrire la plage de valeurs des variables d’entrées auxquelles les variables de sorties sont les plus sensibles. Les plages de sensibilités ont été étudiées par une analyse de sensibilité locale. Les résultats montrent que le drainage des mines de charbon est le facteur anthropique le plus sensible, ayant un impact fort sur les niveaux souterrains du Bassin de la Source Jinci.El manantial Jinci en Shanxi, norte de China, es una fuente importante local de agua. Se secó en abril de 1994 debido a la sobreexplotación del agua subterránea. El sistema de agua subterránea es complejo, involucra muchos factores no lineares e inciertos. Los modelos de red neuronales artificiales (ANN) son técnicas estadísticas para estudiar relaciones no lineares paramétricas de los sistemas de agua subterránea. Sin embargo, los modelos ANN ofrecen poco visión explicativa de los mecanismos de los modelos predictivos. El análisis de sensibilidad puede superar esta deficiencia. En este estudio, se construyó un modelo de redes neuronales de retro-propagación basado en la región entre niveles de agua subterránea y sus factores de sensibilidad en la cuenca del manantial Jinci; estos factores de sensibilidad incluyeron a la precipitación, filtración del río, drenaje de minas, extracción de agua subterránea y descarga lateral para el acuífero Cuaternario asociado. Todos los factores de sensibilidad fueron analizados con el algoritmo de Garson basado en los pesos de conexión del modelo de la red neuronal. Se propuso el concepto de “intervalo de sensibilidad” para describir el intervalo de las variables de entrada a las cuales las variables de salida son más sensibles. Los intervalos de sensibilidad fueron analizados por una aproximación de sensibilidad local. Los resultados mostraron que el drenaje de una mina de carbón es el factor antropogénico más sensible, y que tiene un gran efecto sobre los niveles de agua subterránea de la cuenca del manantial Jinci.中国华北山西省的晋祠泉是当地的主要水源。由于地下水的过量开采, 在1994年4月晋祠泉枯竭了。地下水系统是很复杂的, 受到许多非线性的和不确定的因素的影响。人工神经网络模型利用统计学的方法来研究地下水系统参数之间的非线性关系。但是, 人工神经网络模型对预测模型的机制揭示的并不多。敏感性分析可以克服这些不足。本次研究中, 基于晋祠泉流域地下水位和敏感性因素之间的关系建立了反向传播的神经网络模型, 这些敏感性因素包括降雨,河流渗漏, 矿区排水, 地下水开采和向有水力联系的第四系含水层的侧向排泄。所有这些敏感性因素都是利用基于神经网络模型连接权重的加森算法进行分析的。“敏感性范围”这个概念是用来描述输入变量值的变化范围的,输出变量对这些输入变量是最敏感的。敏感性范围是利用局部敏感性分析方法进行分析的。分析结果表明, 煤矿排水是最敏感的人为因素, 对晋祠泉流域地下水位的影响非常大。A Nascente de Jinci, em Shanxi, no norte da China, é uma fonte principal de água doce local. Devido à sobreexploração de águas subterrâneas, essa fonte esgotou-se em Abril de 1994. O sistema hidrogeológico é complexo, envolvendo muitos fatores incertos e não lineares. As redes neuronais artificiais (RNA) são técnicas estatísticas que permitem estudar as relações não-lineares de sistemas hidrogeológicos. No entanto, os modelos RNA fornecem uma visão incompleta dos mecanismos dos modelos de previsão. A análise de sensibilidade pode ultrapassar este problema. Neste estudo, foi construída uma RNA de propagação retroativa (back-propagation), baseada na relação entre o nível piezométrico e os fatores de sensibilidade na Bacia da Nascente de Jinci; estes fatores de sensibilidade incluem a precipitação, o escoamento subsuperficial, a drenagem por explorações mineiras, a extração de água subterrânea e a descarga lateral para um aquífero Quaternário associado. Todos os fatores de sensibilidade foram analisados com o algoritmo de Garson, baseado em ponderadores de conexão do modelo de rede neuronal. É proposto o conceito de “faixa de sensibilidade” para descrever a gama de valores das variáveis de entrada para as quais as variáveis de saída são as mais sensíveis. As gamas de sensibilidade foram analisadas com base numa abordagem de sensibilidade local. Os resultados mostraram que a drenagem proveniente da exploração das minas de carvão é o fator antropogénico mais sensível, influenciando fortemente o nível de águas subterrâneas na Bacia da Nascente de Jinci. |
| Starting Page | 727 |
| Ending Page | 738 |
| Page Count | 12 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 20 |
| Issue Number | 4 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer-Verlag |
| Publisher Date | 2012-04-13 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Artificial neural networks (ANN) Sensitivity analysis China Groundwater flow dynamic Groundwater management Geology Waste Water Technology Water Pollution Control Water Management Aquatic Pollution Hydrogeology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|