Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Zijl, Wouter |
| Copyright Year | 1999 |
| Abstract | Flow-system analysis is based on the concept of hierarchical groundwater flow systems. The topography of the water table, which is strongly related to the topography of the land surface, is a major factor in the hierarchical nesting of gravity-driven groundwater flow, resulting in flow systems of different orders of magnitude in lateral extent and depth of penetration. The concept of flow systems is extremely useful in the analysis of spatial and temporal scales and their mutual relationships. Basic equations on the laboratory scale are extended to larger, regional scales. Making use of Fourier analysis further develops Tóth's original idea of topography-driven flow systems. In this way, the different spatial scales of the water table are separated in a natural way, leading to a simple expression for the penetration depth of a flow system. This decomposition leads also to the relationship between spatial and temporal scales.Analogous to flow systems, water bodies with different water quality may be called 'transport systems.' Field studies, numerical micro-scale modeling over macro-scale domains, and stochastic dispersion theory indicate that between systems with steady transport, the interfaces are relatively thin. The interfaces are much thinner than the relatively large mixing zones predicted by the conventional engineering approach to macrodispersion, in which relatively large, time-independent macrodispersion lengths are applied. A relatively simple alternative engineering approach is presented. For macrodispersion of propagating solute plumes, the alternative dispersion term gives the same results as the conventional engineering approach and gives correct results for steady-state transport. L'analyse des hydrosystèmes souterrains est basée sur le concept de systèmes hiérarchiques d'écoulement souterrain. La topographie de la surface piézométrique, qui est étroitement liée à celle de la surface du sol, est le facteur principal de l'emboîtement hiérarchique des écoulements souterrains, gouvernés par la gravité, ce qui fait apparaître des systèmes d'écoulement de différentes échelles en étendue et en profondeur de pénétration. Le concept de système d'écoulement est extrêmement utile pour analyser les échelles spatiales et temporelles et leurs relations mutuelles. Les équations de base correspondant à l'échelle du laboratoire sont étendues à des échelles régionales, plus vastes. L'utilisation de la méthode de Fourier met mieux en valeur l'idée originale de Tóth de systèmes d'écoulement commandés par la topographie. De cette façon, les différentes échelles spatiales de la nappe sont séparées naturellement, en donnant une expression simple pour la profondeur de pénétration du système d'écoulement souterrain. Cette décomposition fournit aussi la relation entre les échelles spatiale et temporelle.Dans une approche analogue à celle des systèmes d'écoulement, des masses d'eaux de qualités différentes peuvent être appelées "systèmes de transport". Des études de terrain, une modélisation numérique à micro-échelle sur des domaines à macro-échelle et la théorie de la dispersion stochastique indiquent qu'entre des systèmes soumis à un transport en régime permanent, les interfaces sont relativement minces. Les interfaces sont beaucoup plus minces que les zones de mélange relativement étendues prédites par l'approche conventionnelle de l'ingénierie pour la macro-dispersion, dans laquelle on applique des longueurs de macro-dispersion, indépendant du temps et relativement étendues. Une approche d'ingénierie alternative, relativement simple, est présentée. Pour la macro-dispersion de la propagation de panaches de soluté, le terme alternatif de dispersion donne les mêmes résultats que l'approche d'ingénierie conventionnelle et donne des résultats corrects pour le transport en régime permanent. El análisis de los sistemas de flujo se basa en el concepto de modelos jerárquicos de aguas subterráneas. La topografía del nivel freático, estrechamente relacionada con la topografía de superficie, es uno de los factores principales en la continuidad jerárquica del flujo subterráneo gravífico, dando lugar a sistemas de flujo con distintos órdenes de magnitud en lo que respecta a extensión lateral y profundidad. El concepto de sistemas de flujo es extremadamente útil para el análisis de las escalas espacial y temporal y de sus interrelaciones. Las ecuaciones básicas deducidas a escala de laboratorio se extienden a escalas regionales. Mediante análisis de Fourier se llega al esquema original de Tóth de sistemas de flujo dominados por la topografía. De esta manera, las diferentes escalas espaciales del nivel freático quedan separadas de manera natural, lo que conduce a una expresión simple para la profundidad de penetración en un sistema de flujo. Esta descomposición conduce además a una relación ente las escalas espacial y temporal.De manera análoga a los sistemas de flujo, los cuerpos de agua de distinta calidad química pueden llamarse "sistemas de transporte". Tanto los estudios de campo como los modelos numéricos regionales con discretización a microescala, o la teoría estocástica de la dispersión indican que, para los sistemas con transporte estacionarios, las interfaces son bastante delgadas; más delgadas, por ejemplo, que las predichas por un tratamiento convencional de la macrodispersión, donde se utilizan valores relativamente grandes e independientes del tiempo. El estudio de la macrodispersión de penachos contaminantes se realiza mediante un modelo alternativo simple, donde el término alternativo de dispersión da los mismos resultados que los modelos convencionales. |
| Starting Page | 139 |
| Ending Page | 150 |
| Page Count | 12 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 7 |
| Issue Number | 1 |
| e-ISSN | 14350157 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 1999-02-18 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|