Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Solder, John E. Stolp, Bernard J. Heilweil, Victor M. Susong, David D. |
| Copyright Year | 2016 |
| Abstract | Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R $_{10/90%}$) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.Les traceurs environnementaux (gaz nobles, tritium, gaz industriels, isotopes stables, et carbone radioactif) et l’hydrogéologie ont été interprétés pour déterminer la répartition du temps de transit des eaux souterraines et calculer le temps de transit moyen (TTM) à l’aide d’une modélisation globale à paramètres pour 19 grandes sources réparties sur l’ensemble du bassin versant du Colorado supérieur (UCRB), Etats-Unis d’Amérique. La valeur prédictive du TTM pour évaluer le schéma et le temps de réponse des eaux souterraines au stress hydraulique ( à savoir, la vulnérabilité) est examinée à l’aide d’une analyse statistique des TTM, des débits historiques enregistrés des sources, et de l’indice de sécheresse hydrologique de Palmer. Les TTM des sources est compris entre 10 à 15,000 ans et 90 % de la distribution du débit cumulé pondéré par le temps de transit se situent dans la fourchette comprise entre 2 à 10,000 ans. La variabilité historique du débit a été évaluée comme étant le rapport de 10–90 % du flux excédentaire (R $_{10/90%}$) et variait de 2.8 à 1 .1 pour certaines sources à partir de données de débit disponibles. Le temps de latence (à savoir, le retard dans la réponse du débit par rapport aux conditions de sécheresse) a été déterminé par une analyse de corrélation croisée et variait de 0.5–6 ans pour la même sélection de sources. Les sources avec des TTM plus courtes (<80 ans) sont corrélées statistiquement avec de plus grandes variations de débit et des réponses plus rapides à la sécheresse, indiquant que le TTM peut être utilisé pour estimer l’importance relative et le temps de réponse des eaux souterraines. Les résultats indiquent que la décharge des eaux souterraines vers les cours d’eau dans le UCRB répondra probablement à la variation climatique et à l’augmentation des prélèvements d’eaux souterraines dans un laps de temps correspondant à l’ordre de grandeur des années.Se interpretaron los trazadores ambientales (gases nobles, tritio y gases industriales, isótopos estables y radio-carbono) y la hidrogeología para determinar la distribución de los tiempos de tránsito y calcular el tiempo de tránsito medio (MTT) del agua subterránea con el modelado de parámetros concentrados en 19 grandes manantiales distribuidos a través de la cuenca alta del río Colorado (UCRB), EEUU. Se examina el valor predictivo del MTT para evaluar el patrón y el tiempo de respuesta del agua subterránea al estrés hídrico (es decir, la vulnerabilidad) a través de un análisis estadístico de MTT, registros históricos de descarga de manantiales, y el Índice de Sequía Hidrológica de Palmer. Los MTTs de los manantiales abarcan un intervalo de 10–15,000 años y el 90 % de la distribución de tiempo de tránsito de la descarga ponderada acumulativa cae dentro del rango de 2–10,000 años. Se evaluó la variabilidad histórica de la descarga como una relación del 10 al 90 % del flujo de excedencia (R $_{10/90%}$) y variaba desde 2.8 a 1.1 para los manantiales con datos disponibles de descarga. El tiempo de retardo (es decir, el retardo en la respuesta de descarga en condiciones de sequía) se determinó mediante análisis de una correlación cruzada con un rango entre 0.5 a 6 años para los mismos manantiales seleccionados. Los manantiales con MTT más cortos (<80 años) se correlacionan estadísticamente con las variaciones de descarga más grandes y las respuestas más rápidas a la sequía, lo que indica el MTT se puede utilizar para la estimación de la magnitud relativa y el tiempo de respuesta del agua subterránea. Los resultados indican que la descarga de agua subterránea a los arroyos en el UCRB es probable que respondan en el orden de años a la variación del clima y al aumento de extracción de agua subterránea.利用分布在美国上科罗拉多河流域19个大泉的集中参数模拟解译了环境示踪剂(惰性气体、氚、工业气体、稳定同位素及放射性碳)和水文地质状况,以确定地下水通过时间分布和计算平均通过时间。利用平均通过时间统计分析、泉排泄历史记录和Palmer水文干旱指数检查了评估地下水对水力应力(即脆弱性)响应的模式和时间选择的平均通过时间预测值。泉的平均通过时间从10年到15,000年不等,90%累计排泄-加权通过时间分布范围2–10,000年。以10到90%的流量超过数比值(R $_{10/90%}$)评价了排泄量的历史变异性,根据现有的排泄数据,所选的泉范围可变性为2.8到1.1。通过交叉对比分析确定了延迟时间(即排泄对干旱条件的响应延迟),同样所选的泉延迟时间为0.5 到6年。平均通过时间较短的泉( < 80年)统计上和较大的排泄变化相对应,对干旱的响应更快,表明平均通过时间可用来估算地下水响应的相对值和时间选择。结果表明,上科罗拉多河流域地下水排泄到河流很可能对气候变化的年度顺序和增加的地下水抽取量做出响应。Traçadores ambientais (gases nobres, trítio, gases industriais, isótopos estáveis, e radiocarbono) e a hidrogeologia foram interpretados para determinar a distribuição do tempo de trânsito da água subterrânea e calcular o tempo médio de trânsito (TMT) utilizando modelagem de parâmetros concentrados em 19 grandes nascentes distribuídas pela Bacia do Alto Rio Colorado (BARC), EUA. O valor predito do TMT para avaliar o padrão e o tempo de resposta da água subterrânea após um estresse hidráulico (p.ex., vulnerabilidade) é examinado através da análise estatística do TMT, dos registros históricos da vazão das nascentes, e do Índice Hidrológico de Sêca de Palmer. Os TMTs das nascentes variam de 10 a 15,000 anos e 90 % da distribuição acumulada do tempo de trânsito ponderado pela descarga recai entre 2 e 10,000 anos. A variabilidade histórica da descarga foi avaliada através da razão entre 10 e 90 % do fluxo-limite (R $_{10/90%}$) e variou de 2.8–1.1 para as nascentes selecionadas com dados de vazão disponíveis. O tempo de atraso (tempo decorrido entre o início das condições de sêca e a resposta da vazão) foi determinado através de análise de correlação cruzada e variou de 0.5–6 anos para as mesmas nascentes selecionadas. Nascente com TMTs mais curtos (<80 anos) correlacionam-se estatisticamente com variações de vazão maiores e respostas à sêca mais rápidas, indicando que o TMT pode ser utilizado para estimar a magnitude relativa e o tempo de resposta da água subterrânea. Os resultados indicam que a descarga de água subterrânea nos rios da BARC provavelmente responderão às variações climáticas e ao aumento da explotação da água subetrrânea na ordem de anos. |
| Starting Page | 2017 |
| Ending Page | 2033 |
| Page Count | 17 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 24 |
| Issue Number | 8 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2016-07-20 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Environmental tracers Groundwater age Climate change Groundwater vulnerability USA Hydrogeology Hydrology/Water Resources Geology Water Quality/Water Pollution Geophysics/Geodesy Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|