Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Su, Xiaoru Shu, Longcang Chen, Xunhong Lu, Chengpeng Wen, Zhonghui |
| Copyright Year | 2016 |
| Abstract | Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.Les interactions entre les eaux de surface et les eaux souterraines sont très importantes pour l’évaluation des ressources en eau et pour la protection de la santé des écosystèmes. La chaleur en tant que méthode de traçage est couramment utilisée pour déterminer les échanges interactifs avec une grande précision, un faible coût et une grande facilité. L’écoulement dans une section transversale rivière-berge se produit dans des directions verticales et latérales. Afin de représenter le cheminement de l’écoulement et sa distribution spatiale dans les zones des berges, une méthode de transport de chaleur en boucle imbriquée basée sur un algorithme génétique (GA) en deux dimensions (2-D) pour des sédiments à saturation variable, GA-VS2DH, a été développée sous Microsoft Visual Basic 6.0. VS2DH a été appliqué pour modéliser un champ d’écoulement eau-berge en 2D et GA a été utilisé pour étalonner automatiquement le modèle en minimisant la différence entre les températures observées et simulées dans les zones des berges. Un modèle hypothétique a été développé pour évaluer la fiabilité de GA-VQ2DH dans une modélisation inverse d’un système rivière-berge. Certains tests d’évaluation ont été menés pour reconnaître la capacité de GA-VS2DH. Les résultats indiquent que la vitesse d’infiltration simulée et les paramètres associés à GA-VS2DH sont acceptables et fiables. Puis, GA-VS2DH a été appliqué à deux sites en Chine avec différents matériaux sédimentaires, afin de vérifier la fiabilité de la méthode. GA-VS2DH pourrait être appliqué pour l’interprétation du champ d’écoulement hydrique selon une coupe transverse en 2D. Les estimations de la conductivité hydraulique horizontale au niveau des sites des rivières de Dawen et Qinjuai sont de 1.317 m/jour et 0 .015 m/jour, ce qui correspond à des sédiments sableux et argileux dans les deux sites, respectivement.Las interacciones entre las aguas superficiales y las aguas subterráneas son de gran importancia para la evaluación de los recursos hídricos y la protección de la salud de los ecosistemas. El calor como un método trazador es ampliamente utilizado en la determinación del intercambio interactivo con una alta precisión, bajo costo y gran conveniencia. El flujo en una sección transversal en la margen de un río se produce en sentido vertical y lateral. Con el fin de describir la trayectoria de flujo y su distribución espacial en las zonas de márgenes, se desarrolló un método de algoritmo genético (GA) de dos dimensiones (2-D) de ciclo anidado para el transporte de calor en los sedimentos variablemente saturados, GA-VS2DH, sobre la base de Microsoft Visual Basic 6.0. VS2DH se aplicó para modelar un campo de flujo bidimensional 2-D de una margen y GA se utiliza para calibrar el modelo de forma automática al minimizar la diferencia entre las temperaturas observadas y las simuladas en la zona de las márgenes. Se desarrolló un modelo hipotético para evaluar la fiabilidad de GA-VS2DH en el modelado inverso en un sistema de márgenes del río. Se llevaron a cabo algunas pruebas de referencia para reconocer la capacidad de GA-VS2DH. Los resultados indicaron que la velocidad de filtración simulada y de parámetros asociados con GA-VS2DH eran aceptables y fiables. Entonces GA-VS2DH se aplicó a dos sitios de campo en China con diferentes materiales sedimentarios, para verificar la fiabilidad del método. GA-VS2DH podría aplicarse en la interpretación del campo de flujo de agua 2-D en la sección transversal. Las estimaciones de la conductividad hidráulica horizontal en los sitios Dawen River y Qinhuai River son 1.317 m/día y 0.015 m/día, que corresponden a sedimentos arenosos y arcillosos, respectivamente.研究地表水与地下水交换对评估水资源量和保护生态系统健康具有重要意义。热追踪法凭借其高精度、低成本以及简单方便的特点成为研究地表水与地下水交换的主流方法之一。河岸横断面的水流运动方向包括垂向和侧向。为了精确模拟出河岸横断面水流的流场分布,本文基于Microsoft Visual Basic 6.0开发了一套结合遗传算法(GA)与变饱和多孔介质水流热量运移模拟软件 (VS2DH)的嵌套模拟方法GA-VESDH。其中,利用VS2DH模型建立二维河岸带水流运动模型,通过GA算法使河岸观测温度与模拟温度误差达到最小从而实现模型的参数自动化率定。本文首先建立了一个理想模型,通过一系列基准测试评估GA-VS2DH在河流-河岸系统中的参数反演性能。结果表明GA-VS2DH模拟的渗流流速与参数值均较为可靠。其次,选取了位于中国的两个具有不同介质类型的河岸场地,对GA-VS2DH方法进行了实际应用。结果表明,该方法对河岸横断面的二维水流运动流场模拟具有较好的适用性。估算得到的大汶河与秦淮河场地的河岸水平渗透系数分别为1.317 和0.015 m/day,该值分别于两个场地的砂土和黏土相对应。Interações entre águas superficiais e subterrâneas são de grande significância para avaliar os recursos hídricos e proteger a saúde ecossistêmica. Calor como um método traçador é amplamente utilizado na determinação do intercambio interativo com alta precisão, baixo custo e grande conveniência. O fluxo transversal na bancada de um rio ocorre na direção vertical e horizontal. A fim de descrever o percurso do escoamento e sua distribuição espacial nas bancadas, um algoritmo genético (AG) bidimensional (2D) de transporte de calor de loop aninhado (nested-loop) para variabilidade de sedimentos saturados, GA-VS2DH, foi desenvolvido baseado no Microsoft Visual Basic 6.0. O VS2DH foi aplicado para modelar um campo fluxo 2D na bancada e GA foi usado para calibrar o modelo automaticamente para minimizar a diferença entre as temperaturas observadas e simuladas nas bancadas. Um modelo hipotético foi desenvolvido para aferir a confiabilidade do GA-VS2DH na modelagem inversa em um sistema de bancadas do rio. Alguns testes de referência foram conduzidos para identificar a capacidade do GA-VS2DH. Os resultados indicam que a velocidade da infiltração simulada e os parâmetros associados com o GA-VS2DH foram aceitáveis e seguros. Então, o GA-VS2DH foi aplicado em duas áreas de estudo na China com diferentes materiais sedimentares, para verificar a precisão do método. O GA-VS2DH pode ser aplicado na interpretação do campo de fluxo transversal bidimensional. As estimativas de condutividade hidráulica horizontal na área dos Rios Dawen e Qinhuai é de 1.317 m/dia e 0.015 m/dia, que corresponde aos sedimento de areia e argila nos dois locais, respectivamente. |
| Starting Page | 2035 |
| Ending Page | 2047 |
| Page Count | 13 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 24 |
| Issue Number | 8 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2016-08-25 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Flow field River bank GA-VS2DH Inverse modeling Groundwater/surface-water relations Hydrogeology Hydrology/Water Resources Geology Water Quality/Water Pollution Geophysics/Geodesy Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|