Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Molz, Fred J. Kozubowski, Tomasz J. Podgórski, Krzysztof Castle, James W. |
| Copyright Year | 2007 |
| Abstract | In order to generalize the fractal/facies concept, a new stochastic fractal model for ln(K) increment probability density functions (PDFs) is presented that produces non-Gaussian behavior at smaller lags and converges to Gaussian at larger lags. The model is based on the classical Laplace PDF. The new stochastic fractal family is called fractional Laplace motion (fLam) having stationary increments called fractional Laplace noise (fLan). This fractal is different from other fractals because the character of the underlying increment PDFs changes dramatically with lag size, which leads to lack of self-similarity. Data also appear to display this characteristic. In the larger lag size ranges, approximate self-affinity does hold. The basic field procedure for further testing of the fractional Laplace theory is to measure ln(K) increment distributions along transects, calculate frequency distributions from the data, and compare results to appropriate fLan family members. The variances of the frequency distributions should also change with lag size (scale) in a prescribed manner. There are mathematical reasons such as the geometric central limit theorem, for surmising that fLam/fLan may be more fundamental than other approaches that have been proposed for modeling ln(K) frequency distributions.Afin de généraliser le concept fractale/faciès, un nouveau modèle fractal stochastique est présenté pour les fonctions de densité de probabilité (FDP) d’accroissement de ln(K); il présente des comportements non-gaussiens pour des petits décalages et converge vers le gaussien pour des décalages plus grands. Le modèle est basé sur la FDP classique de Laplace. La nouvelle famille fractale stochastique est appelée mouvement fractionnaire laplacien (fLam) et présente des accroissements stationnaires appelés bruit fractionnaire laplacien (fLan). Ce fractal est différent d’autres fractals car le caractère des FDP d’accroissement sous-jacentes change considérablement avec la grandeur du décalage, ce qui conduit à un manque d’auto-similarité. Les données semblent également présenter cette caractéristique. Pour la gamme des décalages plus grands, une auto-affinité approximative a lieu. La procédure de base pour des tests supplémentaires sur la théorie du fractionnaire laplacien consiste à mesurer les distributions d’accroissement de ln(K) le long de coupes transversales, à calculer les distributions de fréquence des données et à comparer les résultats aux membres de famille de fLan appropriés. Les variances des distributions de fréquence devraient également changer avec la grandeur du décalage (échelle) suivant une méthode imposée. Il y a des raisons mathématiques, tel que le théorème géométrique de la limite centrale, qui permettent de soupçonner que l’approche fLam/fLan puisse être plus fondamentale que d’autres approches qui ont été proposées pour modéliser les distributions de fréquence de ln(K).Con objeto de generalizar el concepto de facies/fractales se presenta un nuevo modelo de fractales estocásticos para funciones de densidad de probabilidad (FDPs) del incremento ln (K) el cual produce un comportamiento no-Gaussiano en intervalos pequeños y converge en intervalos mayores. El modelo se basa en la clásica FDP Laplace. La nueva familia de fractales estocásticos se denomina señal de Laplace fraccionaria (fLam) teniendo incrementos estacionales denominados ruido de Laplace fraccionario (fLan). Este fractal es diferente de otros fractales porque el tipo de cambio del incremento subyacente en la FDP ocurre dramáticamente con el tamaño del intervalo, lo cual conduce a falta de auto-similaridad. Los datos también parecer mostrar esta característica. En los rangos con tamaño del intervalo más grandes se manifiesta auto-afinidad aproximada. El procedimiento básico de campo para evaluación posterior de la teoría de Laplace fraccionada es medir las distribuciones del incremento de ln(K) a lo largo de cortes transversales, calcular distribuciones de frecuencia para los datos, y comparar resultados para miembros de familia fLan apropiados. Las varianzas de las distribuciones de frecuencia también deberían de cambiar con el tamaño del intervalo (escala) de una manera prescrita. Existen razones matemáticas, tal como el teorema del límite central geométrico, para suponer que fLam/fLan puede ser más fundamental que otros enfoques que han sido propuestos para modelizar las distribuciones de frecuencia de ln (K). |
| Starting Page | 809 |
| Ending Page | 816 |
| Page Count | 8 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 15 |
| Issue Number | 4 |
| e-ISSN | 14350157 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2007-01-16 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Facies Fractal model Heterogeneity Groundwater hydraulics Geostatistics Waste Water Technology Water Pollution Control Water Management Aquatic Pollution Geology Hydrogeology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|