Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Atteia, Olivier Huberson, Serge Dupuy, Alain |
| Copyright Year | 2010 |
| Abstract | A new method to calculate the transport of dissolved species in aquifers is presented. This approach is an extension of the stream tubes which are used for flow computation. The flux tubes defined here are conservative for solutes, but not for water mass. The flux tubes are first defined in a general domain and then calculated in a two-dimensional uniform flow field. The tubes’ computation is based on a parametric solution. The method is extended further in order to deal with heterogeneous media. A particle-tracking algorithm is used where the deviation of the flux-tube boundaries due to dispersion is accounted for. The approximate solution obtained by this approach is compared to classical numerical solutions given by a finite difference code (RT3D) and a finite element code (FEFLOW). This comparison was performed for several test cases with increasing complexity. The differences between the flux-tube approach and the other methods always remain small, even regarding mass conservation. The major advantage of the flux-tube approach is the ability to reach a solution quickly, as the method is hundreds to thousands of times faster than classical finite difference or finite element models.Une nouvelle méthode de calcul du transport de solutés dans les aquifères est présentée. Cette approche est une extension des tubes de courant utilisés pour le calcul de flux. Les tubes de courant définis ici sont conservatifs pour les solutés, mais pas pour la masse d’eau. Les tubes de courant sont d’abord définis de façon générale puis paramétrés pour un champ d’écoulement bidimensionnel uniforme. Le calcul du tube est basé sur une solution paramétrique. La méthode est développée afin d’être compatible avec des milieux hétérogènes. Un algorithme de suivi de particule est utilisé pour tenir compte de la déviation due à la dispersion en limite de tube de courant. La solution approchée obtenue par cette méthode est comparée aux solutions classiques obtenues par différence finie (code RT3D) et par élément fini (code FEFLOW). Cette comparaison a été réalisée sur plusieurs cas tests de complexité croissante. Les différences entre l’approche par tubes de courant et les autres méthodes restent toujours petites, même s’agissant de la conservation de masse. L’avantage majeur de l’approche par tube de courant est sa capacité de fournir une solution des centaines à des milliers de fois plus rapidement que les modèles classiques par différence finie ou par élément fini.Se presenta un nuevo método para calcular el transporte de especies disueltas en acuífero. Esta aproximación es una extensión de los tubos de corriente que son usados para el cálculo de flujo. Los tubos de flujo definidos aquí son conservativos para los solutos, pero no para la masa de agua. Los tubos de flujo son definidos primero en un dominio general y luego calculados en un campo de flujo uniforme bidimensional, El cálculo de los tubos está basado en una solución paramétrica. El método se extiende ulteriormente para tratar un medio heterogéneo. Se usa un algoritmo para el seguimiento de una partícula donde se explica la desviación de los límites del tubo de flujo debido a la dispersión. La solución aproximada obtenida por esta aproximación se compara con las soluciones numéricas clásicas dada por el código de diferencias finitas. (RT3D) y el código de elementos finitos (FEFLOW). Esta comparación fue realizada para varios casos de prueba con una complejidad creciente. Las diferencias entre la aproximación de los tubos de flujo y los otros métodos desde siempre permanece pequeña aún teniendo en cuenta la conservación de la masa. La ventaja mayor de la aproximación del tubo de flujo es la habilidad de alcanzar una solución rápidamente, dado que el método es cientos de miles de veces más rápido que los clásicos métodos de elementos finitos o diferencias finitas.本文介绍含水层中溶解物种运移的一种新的计算方法。该方法是流量计算中的流管法的扩展。这里定义的通量管是溶质不变, 而不是水量守恒。首先在一个广义域上定义通量管, 然后在一个二维均一水流场中计算。管道的计算是基于参变量的溶解。为了处理非均质介质进一步对方法进行扩展。当通量管边界上存在由于弥散导致的偏差时采用粒子跟踪算法。将该方法得到近似解同有限差分程序 (ΡΤ3Δ) 和有限元程序 (ΦΕΦΛΟΩ) 给出的经典数值解进行对比。按照复杂性的增长进行了数次对比。即使考虑水量均衡, 通量管方法同其他方法的偏差都很小。通量管方法的主要优点是其快速求解能力。该方法相比传统的有限差分或有限元模型要快几百到数千倍。É apresentado um novo método para calcular o transporte de espécies dissolvidas em aquíferos. Esta abordagem é uma extensão dos tubos de corrente que são utilizados no cálculo do fluxo. Os tubos de fluxo aqui definidos são conservativos para solutos, mas não para a massa de água. Os tubos de fluxo são inicialmente definidos num domínio geral e, em seguida, calculados num campo de fluxo uniforme bidimensional. O cálculo dos tubos é baseado numa solução paramétrica. O método é alargado, a fim de lidar com meios heterogéneos. Um algoritmo de rastreamento de partículas é utilizado quando é contabilizado o desvio dos limites do tubo de fluxo devido à dispersão. A solução aproximada obtida por esta abordagem é comparada com a clássica solução numérica dada por um código de diferenças finitas (RT3D) e um código de elementos finitos (FEFLOW). Esta comparação foi realizada para vários casos de teste com complexidade crescente. As diferenças entre a abordagem pelo método do tubo de fluxo e os outros métodos permanecem sempre pequenas, mesmo em termos de conservação da massa. A principal vantagem da abordagem pelo método do tubo de fluxo é a capacidade de chegar a uma solução rapidamente, pois o método é centenas a milhares de vezes mais rápido do que os métodos clássicos de diferenças finitas ou de elementos finitos. |
| Starting Page | 317 |
| Ending Page | 328 |
| Page Count | 12 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 19 |
| Issue Number | 2 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer-Verlag |
| Publisher Date | 2011-01-13 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Analytical solutions Numerical modelling Solute transport Particle tracking Flux tubes Waste Water Technology Water Pollution Control Water Management Aquatic Pollution Geology Hydrogeology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|